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SMALL AREA ESTIMATION OF DISABILITY IN AUSTRALIA

Daniel Elazar and Lewis Conn
Analytical Services Branch

ABSTRACT

In Australia, as in many countries, there has been a rapidly growing demand from
policy makers in both regional and national jurisdictions for social and economic small
area data to satisfy expanding decision-making requirements.  To date, the Australian
Bureau of Statistics (ABS) has attempted to meet this demand using simple synthetic
estimation, occasionally using more sophisticated small area models.  The increasing
user demand for small area estimates, together with practical difficulties in increasing
survey sample sizes, has motivated the need to identify ways of finding reliable and
defensible methods for producing quality small area estimates.

A project has commenced at the ABS to produce a series of manuals on the theory,
application and processes for producing small area statistics in the Australian context.
As part of this project, an empirical study has commenced into alternative approaches
for producing small area estimates of disability.  This builds on ABS experience in
producing synthetic estimates from previous surveys of disability.  The empirical study
will assist in writing the small area estimation manual by developing practical
knowledge and understanding of available small area methods with the ABS.  In
addition to this, we hope the results will go some way towards satisfying user demand
for small area data on this topic.

The main purpose of this paper is to discuss methodological approaches undertaken
in the application of existing small area methods to the topic of disability.  This paper
firstly briefly discusses the context of small area estimation in Australia.  The paper
then details the various small area models applied to the disability data.  We use a
simple demographic synthetic estimator in addition to a multivariate Poisson GLMM
and a Bernoulli GLM.  The latter two models are estimated using hierarchical Bayesian
methods.  We then present a set of diagnostic measures, found in the literature, which
we used to assess the quality of the small area estimates produced by these models.
Finally a comparison is drawn of the performance of these models against the
diagnostic measures used.  The results presented here are still preliminary and for this
reason we also discuss the priorities for future work to improve on these models.
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1.  THE AUSTRALIAN CONTEXT

Over the past fifteen years there has been a rapidly growing demand for small area
estimates in Australia.  There are a variety of socio-political factors that have also
stimulated this growth.  These are as follows:

1. Growth in demand for small area statistics has largely coincided with an
increased emphasis on evidence-based decision-making by government.
Government agencies are now subject to greater accountability in providing a
more efficient, effective and coordinated approach to the delivery of program
services to regions with greatest need.

2. Local governments are taking a more pro-active role in the economic and social
development of their jurisdictions.

3. There has been an increased focus of government policy making, both at
national and state levels, on addressing the increased levels of economic and
social disadvantage faced by communities residing in outer regional and remote
areas of Australia.  While these areas are often geographically very large, the
populations they contain are usually very small.  A significant proportion of
Australia’s indigenous people, who are the subject of a number of health,
cultural, community development and housing programs, also reside in these
remote areas.

4. Non-government organization service-providers increasingly require data for
funding submissions and planning.

5. There is a rapidly growing statistical sophistication among economists in the use
of more complex models, that combine both micro and macro economic
dynamics, in forecasting economic trends and relationships.  In the statistical
realm, a flourish of new small area estimation methods, combined with
unprecedented increases in computing capabilities, have meant that small area
problems that were once intractable are becoming feasible.

ABS survey collections are designed to produce reliable estimates only at broad
geographic levels such as at national and state levels.  Practical issues have meant that
there is little prospect of increasing sample allocations at the regional level in order to
produce small area estimates of useful quality.  The most feasible option, therefore,
for satisfying the demand for small area data is the development of appropriate small
area techniques to make use of existing survey data sources, along with suitable
auxiliary data sources, including those available from other government or private
agencies.

A number of small area estimation projects have been undertaken in the ABS over the
last decade.  These include a study of the estimation of labour force status for chosen
small area regions (Bell and Carolan, 1998) using a time series model that takes
account of autocorrelation between sample overlap groups.  Several projects have also
been undertaken into producing small area estimates of disability using census data.
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The ideal approach to small area estimation, in the context of a national statistical
service, would be to meet the following goals: meet decision-making objectives of
users; cost-effectiveness; produce output of sufficient reliability for intended uses; be
appropriate to the context of the problem; involve defensible methodologies; and
provide results that can be readily interpreted and explained to users.  In practice it
may be difficult to meet all of these goals simultaneously, so that judgement needs to
be exercised in determining the relative priorities of these objectives.

In response to this need, the ABS is developing a manual (or more likely a suite of
manuals) on small area estimation methods and processes that will present a
consistent approach to be used in the ABS, as a step towards assuring a standard
quality of small area output.  The manuals will be tailored to areas of the ABS involved
in the production of small area estimates, whether they are involved in servicing client
requests, implementing complex methodologies or validating, clearing and releasing
output data.

The goals of the Small Area Estimation Practice Manuals Project, as it is known, are to
increase the ABS’ capability in satisfying the growing demand for small area statistics
and to standardize and focus the ABS’ approach to meeting this need.  The manuals
will help bridge the gap between the theoretical knowledge of small area estimation
techniques and the practical application of such techniques.  The manuals are
intended to not only be a practical and methodological resource on how to go about
producing small area data, but also a repository for capturing the growing experience
of small area methods and processes.  Within the context of a national statistical office,
these goals are constrained by cost considerations, ease of implementation and
interpretability of models and output for both statisticians and clients.

Brackstone (2002) gives a very good account of the issues facing national statistical
offices in producing small area statistics.  Pfeffermann (2002a) gives a concise
summary of the key issues being confronted in small area estimation.  Pfeffermann
(2002b) and Trewin (1999) give an outline of the future directions for the application
of small area estimation methods in the production of official statistics.  They
conclude that the use of more sophisticated model based methods is inevitable for
improving the reliability of small area estimates.
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2.  EMPIRICAL STUDY OF DISABILITY

An empirical study into small area estimates of disability is currently being undertaken
as part of the Small Area Estimation Practice Manuals Project.  The response variables
for this empirical study are obtained from the Survey of Disability, Ageing and Carers
(SDAC) (Australian Bureau of Statistics, 1998).  The main purpose of this empirical
study is to develop within the ABS, knowledge and understanding of the
implementation and effectiveness of small area techniques.  The empirical study will
assist in providing answers to the following questions:

1. What is the gain in quality in using sophisticated small area techniques over
simpler ones (for example, Poisson generalized linear mixed models over linear
or synthetic methods)?

2. What contribution does the quality of auxiliary data sources have towards the
overall quality of small area estimates and what is the minimum level of quality
for auxiliary data?  By quality we mean not just the accuracy of the auxiliary data
but also it’s relevance to and correlation with the response variables.

3. What is the relative efficiency gain of using a unit (person) level model
compared with a corresponding area level model?

4. At how fine a level can viable small area estimates be produced before suffering
from model breakdown?  By fine we mean either geographical size or the
cross-classification of small area estimates by other variables such as severity of
disability, age and sex.

5. What are the best approaches to validating output small area estimates in
practice?  How can user knowledge or preconceptions be best utilised in
validating small area output?  For example, disability administrators will be able
to identify the districts in which the demand for services out-strips supply and
whether the small area statistics reflect this.  Disability administrators will also be
useful in assessing the validity of small areas with extreme values.

6. What are the most efficient and appropriate measures of accuracy for modelled
small area estimates? (Trewin, 1999)  Are reliable and comprehensive measures
available that are similar in effectiveness to those used for measuring the
sampling error of direct sample estimates?

This paper will cover the models fitted to the data, the estimation method using
hierarchical Bayes (HB), an assessment of the performance of the various models
using various diagnostics, and finally gives a prioritised list of areas for further work.
The reader interested in a detailed treatment of the survey and auxiliary data used,
including associated quality issues, plus the quality of direct survey estimates, is
referred to Elazar (2004).
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3.  SMALL AREA MODELS

In this section we discuss the small area models we intend applying to the disability
empirical study.  One of the main objectives behind this empirical study is to apply a
range of appropriate models, ranging from simple to more sophisticated, to assess
which performs best in terms of accuracy, ease of implementation, production costs
and model interpretability.  In a production context, the choice of model will depend
intrinsically upon client quality requirements and the availability and quality of
auxiliary data.  The understanding gained from this empirical study will be a starting
point for applications to other small area problems.

The models we will be using for this empirical study will all be extensions of the basic
Fay–Herriot model.  Models of the Fay–Herriot form are widely used in the small area
estimation literature.  One reason for using Fay–Herriot models is that they
incorporate, as a special case, synthetic estimation, which has been used in previous
small area estimation work on disability at the ABS.  It is therefore convenient that
synthetic model estimates can be easily obtained from the Fay–Herriot model by
removing the random effects term (Rao, 2003).  Another attractive feature is that the
Best Linear Unbiased Predictor (BLUP) under the Fay–Herriot model can be shown to
take the form of a composite estimator (Pfeffermann, 2002a).  The composite
estimator is a weighted average of the direct survey estimator and a synthetic estimate
based on a generalised linear model fitted to the observed data at a broader area.

In all the small area models proposed, we consider the multivariate case wherever
possible, subject to model identifiability.  There are a number of response variables we
wish to predict at the small area level, these mainly being impairment type
(intellectual, physical, psychological/psychiatric, sensory, and head injury/brain
damage) by level of severity (profound, severe, moderate, mild).  It is important to
take account of the variance covariance structure of these categories in order to
improve model efficiency via multivariate models.  A secondary reason is that the
model fitting process is simpler than fitting separate models for each category.

There are three key dimensions to the small area models we wish to consider for the
disability empirical study, which together form a framework.  These dimensions are
linear versus nonlinear, area versus unit level and mixed effects versus synthetic.  We
wish to consider a range of models across these dimensions to identify the best
trade-off in competing models between simplicity, reliability, accuracy and
interpretability.  Previous work done in producing small area estimates of disability at
the ABS, have used unit level models so one of the aims of the empirical study is to
identify how much gain or loss of efficiency is afforded by unit as opposed to area
level models.  We present below a range of models that cover the more promising
elements of this framework but not necessarily all.
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3.1  Demographic synthetic method

This approach has in the past been commonly used for statistical consultancies carried
out by the ABS.  Direct estimates of proportion for impairment types were calculated
at a broader area, in this case at the level of state, where direct estimates possess
sufficient statistical reliability.  These proportions are calculated at the age by sex level
and then multiplied by demographic population counts (again at the age by sex level),
which were obtained at the small area level, in our case the SSD.  Initially we chose the
statistical division (SD) as our broad area, which is finer than state and allowed for
more geographical variation in impairment rates.  Unfortunately, the use of SD as the
broad area caused instability in the estimates and their estimates of variance.  We
therefore resorted to using state as the broad area.

An intrinsic assumption being made in this and all synthetic approaches is that all
small areas within the broader region have the same relationship between the
predictor variable and explanatory variables.  In this particular case, impairment rates
at the age by sex level are assumed to remain constant throughout the broader area.
If this assumption fails to hold, the resulting estimates will suffer from bias, which in
practice is difficult to measure.

Mathematically, letting i denote the i-th SSD and S denote the state in which the i-th
SSD is located, the demographic synthetic estimate of the number of persons in the
r-th impairment type in the i-th SSD is given by:

where

Ni,g = population count of persons in the g-th age by sex cell in a particular SSD,

NS,g =  = population count of persons in the g-th age by sex cell in state S,i g
i S

N
∈
∑

= direct survey estimate of the number of persons in the g-th age by sex cell( )
,ˆ r

S gy

with the r-th impairment type in state S.

The efficiency of the demographic synthetic estimator is reflected in its sampling( )ˆ r
iy

error, which can be measured using a replicate variance technique such as the
jackknife.  The bias of this method is not so easy to quantitatively measure without the
benefit of actual or simulated population data.  However the diagnostic comparing the
distribution of small area predictions against that of the direct estimates (see Section
4.1.6) gives a reasonable indication of the presence of a pronounced bias.
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3.2  Poisson model

The demographic method is quite simple but apart from the assumption already
mentioned of constant impairment rate within broad areas, suffers from several
additional drawbacks that may compromise the accuracy of the resulting estimates.
Firstly it cannot borrow strength from correlations between the different types of
impairment.  Secondly, it doesn’t take account of additional auxiliary information that
may help improve the reliability of predicted small area estimates.  Thirdly, at the
small area level the disability data is count data, for which a Poisson generalised linear
model (GLM) would be better suited.

For these reasons, plus the fact that we are dealing with impairment type count data,
we chose as a second model, the Poisson model with log transform.  The Poisson
model is commonly regarded as the “benchmark model for count data” (Cameron and
Trivedi, 1998).  The Poisson model we fitted was at the small area level (not person
level) and incorporated both fixed and random effects terms.

The Poisson model is taken from the generalised exponential family of models
discussed by Ghosh, et al. (1998).  We firstly present the notation to be used.  Let

be an r×1 vector of SDAC direct estimates of r impairment type variables, for small

area i, (i=1,...,m).  Assume that the elements  of  are distributed Poisson(µir)θ̂ir
ˆ

iθ
with mean parameters µir obeying

where

Xi is an r×rp matrix of p auxiliary variables for each of the r impairment type
variables, and

β is an rp×1 vector of regression coefficients.

The νi are the small area level random effects, independently distributed with

multivariate normal Nr(0,Σν).

The above model was estimated using the WinBUGS software.  For reasons of brevity a
hierarchical Bayes formulation of the Poisson model is not presented here but is
available on request.

Over-dispersion is a common problem when fitting a Poisson model and this is likely
with the model we have fitted.  At the time of writing, further work is being
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undertaken to incorporate more effective ways of taking account of the
over-dispersion problem.

3.3  Bernoulli model

The Poisson model incorporates auxiliary information at the small area level.  One of
the aims of the disability empirical study was to test the performance of an area level
model against that of a unit level model or at least in this case a combined unit/area
level model.  As a third model, a Bernoulli model with underlying logistic transform
was chosen.  Like the previous model, the intention was to fit this model with
multivariate error structure and random effects.  However at the time of writing, we
have only been successful in fitting a multivariate model with univariate error
structure and fixed effects only, using the WinBUGS software.  Further work will
shortly be undertaken to try and fit the model with a multivariate error structure and
random effects.

An outline specification for the Bernoulli model is as follows.  We wish to model the

r-th impairment type  of person j (j = 1,…, ni) within small area i (i = 1,…, m) andr
ijy

then use this model to predict impairment types for non-sampled units, thereby

producing estimates of disability  (as defined in Section 3.2).  We assume the  toˆ
iθ r

ijy

be independent Bernoulli ( ) variables with conditional probability density function
r
ijp

given by:

i=1,…,m; j=1,…,ni

Then λij can be modelled thus:

i=1,…,m; j=1,…,ni

where the area level random effects vi are distributed Nr(0,Σν).

Although the matrix of auxiliary variables, Xij is subscripted to indicate both person
and small area level variables, the only person level variables it will include will be age
and sex, as determined from the survey.  All other covariates will actually be at the
small area level.
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A multinomial logistic model was considered as a multivariate extension to the
Bernoulli model, however time limitations have so far prevented us from pursuing this
option.

3.3.1  Generating small area estimates from the Bernoulli model

Predictions of small area estimates need to be formed from the models that use unit
level response variables.  This can be done for each impairment type by summing

un-weighted response values for variable r, from the sample si in small area i and then
adding to that the sum of the predicted proportions  across the sampler

ijp%

complement .  The  are predicted (Rao, 2003) by estimating β and generating ac
is r

ijp%

realisation of  from its underlying distribution.  We then have:r
iv

where  is the predicted count estimate for the r-th impairment type in the i-thˆr
iy

small area,  is the sample response for the r-th impairment type from the j-thˆr
ijy

person in the i-th small area.

An important issue is how do we ensure that the sum of the modelled count estimates

across disability categories,  , agrees with the population benchmark for the∑ ˆr
ir

y
i-th small area.
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4.  MODEL RESULTS

The three models referred to in Section 3 were fitted to the SDAC data using the
auxiliary information described in Elazar (2004).  Due to the drawbacks in the scope
and nature of the main auxiliary datasets, there was only limited success in using the
Disability Support Pension and the Commonwealth State/Territory Disability
Agreement (CSTDA) datasets (for details, see Elazar, 2004).  Auxiliary variable
parameters were significant only for a restricted number of impairment type variables.
Age and sex proved to be more reliable predictors across all impairment types.

The philosophical approach taken was to choose auxiliary variables for the models
that should be closely related to and therefore be good predictors of impairment.  It
may also be desirable to throw in a wide range of demographic, social and economic
variables in the hope of obtaining a good predictive model.  Such data might be
obtained for example from either population census data or other administrative data
sources.  There are numerous person level variables such as income level, marital
status, labour force status and family structure that were collected in the SDAC
questionnaire and are also available for the nearest population census.

The main purpose of the model is in this case to predict small area estimates of
disability.  While it is desirable to maintain parsimony, it may be wise to consider
including a wider range of auxiliary variables.  Sometimes statistical relationships can
be found between the response variable and certain auxiliary variables that one would
not have anticipated.  However caution should be exercised in avoiding over-fitting
the model while trying to minimise prediction errors.  Biases resulting from the
presence of model misspecification caused by the use of spurious covariates or poor
model choice won’t be accounted for by measures of model prediction error.

4.1  Diagnostics for predicted small area estimates

Several diagnostics have been used to assess the quality of small area model
predictions.  Most of these have been obtained from Brown, et al. (2001).  These
diagnostics have been invaluable in assessing the relative performance of competing
small area model predictions.  Subjective judgment has to be exercised in using some
of these diagnostics.  Some models may perform better on some diagnostics but not
others, but this may be reversed for other models.  Clearly there is a need to assess
the relative importance of the diagnostics.

4.1.1  Measure of bias

The first diagnostic measures a tendency for bias to be present in the small area model
predictions.  Although small area direct survey estimates may have high sampling
error, they are largely unbiased.  If the model predicted small area estimates are also
unbiased, then a plot of these estimates against the direct survey estimates would
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show the scatter plot evenly centred around the unit line (y=x).  There is an
important caveat to be aware of when using this diagnostic test.  Where the direct
survey estimates are derived from a non-linear estimator (e.g. ratio estimator), the
estimator will to some extent be biased and this bias will be most significant when the
small area sample size is small.  This will usually affect the lower left hand side of the
scatter plot where population estimates are smallest.  Therefore some degree of
caution needs to be exercised when interpreting this kind of diagnostic.

The diagnostic measure is carried out in the following manner.  After plotting model
predicted estimates against the direct survey estimates, a regression line is fitted to
the scatterplot.  If the confidence interval calculated for the estimated regression
slope does not contain the value of 1, then the hypothesis that the model predictions
are unbiased is rejected.  How far the value 1 is outside the confidence interval gives at
least a qualitative indication of the extent of the bias.

Figure 4.1 below shows an example of this diagnostic for the intellectual impairment
type under the Bernoulli model.  The slope of the regression line (the lower dashed
line) is not statistically different from the unity, despite the large variation in the
residuals.

4.1  Bias diagnostic: Bernoulli model – Intellectual impairment type 
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Figure 4.2 below shows the same diagnostic for the physical impairment type.  Here
the regression slope (again the lower dashed line) is statistically different to 1.  The
reader may recall that the direct ratio estimator used for the vertical axis and as the
response variable in the models, can suffer from bias in small areas where the sample
size is quite small.  However as the regression line intercepts are not statistically
different from zero, it appears that any bias arising from the use of the post-stratified
ratio estimator for areas with a small population is not significant.

4.2  Bias diagnostic: Bernoulli model – Physical impairment type
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A summary of how the various models perform for each impairment type is shown at
table 4.3.  For each impairment type and small area model, the fitted slope is shown
with the 95% minimum and maximum confidence interval bounds.  Confidence
intervals for regression slopes shown in bold do contain the unit slope.
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4.3  Bias diagnostic: Significance of regression slopes

1.031.011.021.041.021.031.021.001.01None
1.060.890.981.411.161.291.060.910.98Head injury
1.060.810.942.151.611.881.020.820.92Psychological
0.970.860.920.850.740.801.010.920.96Sensory
1.110.830.973.462.462.961.130.921.02Intellectual
0.940.870.900.820.730.780.980.910.95Physical

CI maxCI minSlopeCI maxCI minSlopeCI maxCI minSlope

BernoulliPoissonSynthetic

Table 4.3 shows that, for almost all impairment types, we would reject the hypothesis
that the synthetic demographic modelled estimates are biased, at the 5% significance
level.  The synthetic demographic modelled estimate for the physical impairment type
is only borderline significant in bias.  The Poisson model indicates significant bias for
all impairment types which suggests that the model, at least in its current form, is not
performing well.  There is no significant bias for intellectual, psychological and other
impairments under the Bernoulli model, although the remaining impairment types
are not as biased as under the Poisson model.

4.1.2  Coverage statistic for confidence intervals

RSE’s can readily be calculated for direct survey estimates.  Likewise a measure of
prediction error, such as the root relative MSE can be calculated for predicted small
area estimates.  Based on these respective measures of error, confidence intervals for
each small area can be constructed for the direct estimate and the predicted modelled
estimate.  We expect each of these confidence intervals to include the “true” value
95% of the time.  These confidence intervals are adjusted so that they have a 95%
chance of overlapping.  The number of times (across small areas) they do actually
overlap is then counted and compared to the Binomial distribution to give a
non-parametric significance test of the bias of model estimates relative to their
precision. (Brown, et al., 2001)

Brown, et al. (2001) show that if z(α) is the probability that a standard normal variable
takes values greater than z(α), then the two intervals X ± z(β)σx and Y ± z(β)σx do
not overlap with probability α if z(β) is chosen as:

Table 4.4 below shows the results of this diagnostic for the three models used in this
empirical study and each impairment type.
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4.4  Coverage diagnostic: Percentage non-overlap between confidence intervals of direct and
model predicted estimates

15.8%14.2%2.2%None
1.6%6.6%0.0%Head injury
0.5%6.0%0.0%Psychological
3.8%9.8%1.1%Sensory
6.0%19.1%1.6%Intellectual
9.8%18.0%1.1%Physical

BernoulliPoissonSynthetic

The simple synthetic method performs quite well for most impairment types on this
diagnostic with 2% or less non-overlap in the confidence intervals.  Surprisingly, for
the Poisson and Bernoulli models, the level of non-overlap is statistically high for the
no impairment category, and at present we do not have any firm explanation for why
this might be the case.  A possible explanation is that, being around 80% of the
population, the RSEs for this impairment type are quite low but the predicted model
estimates don't perform as relatively well.  Hence the level of non-overlap is higher
than for any other impairment type.

The Poisson model has an acceptable level of non-overlap for the psychological and
head injury impairment types, but not for the other impairment types.  Confidence
intervals for the Bernoulli model predictors overlap sufficiently well with those of the
direct estimates for most variables except for the physical and no impairment types.
Brown, et al. (2001) suggest that a lack of sufficient overlap is indicative of random
effects not being taken account of in the model.  This is certainly true of the current
Bernoulli model.  The Poisson model, although it does include random effects terms,
may be suffering from untreated over-dispersion, which we currently postulate is the
cause of its poor performance under most of the diagnostics.

4.1.3  Measures of accuracy for model predictions – Posterior root relative variances

It is important to assess the quality of a set of small area predictors on the basis of
their performance across all the diagnostics.  However most small area practitioners,
particularly those within a national statistical service, desire a single summary measure
of the precision and accuracy of small area estimates.  Such a measure is easier to
explain to clients and better conveys the reliability and fitness for purpose of the small
area estimates.

In this context, measures of model prediction error are important for this purpose.
Many small area practitioners, operating within a frequentist paradigm, calculate mean
square errors (MSEs) for predicted small area estimates.  For a good introduction to
the calculation of MSEs in the case of linear mixed models, see Section 4 of Saei and
Chambers (2003).
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A number of commentators on small area techniques, whether they be frequentists or
Bayesians, state that measures of prediction error are more important than goodness
of fit measures on the small area model used to make those predictions.  In other
words it is the prediction that one is more interested in, and a slight degree of model
over-fitting is not so much of a concern if the resulting predictions are of a superior
precision.  However, supporters of this position would agree, that an important
assumption is that there is no serious model misspecification present.  In particular if
the small area model is considerably over-fitted, the possibility of spurious covariates
is more likely and the model is also unlikely to be applicable to other datasets.

Given the complex matrix manipulations that need to be undertaken in calculating
MSEs and the fact that we used hierarchical Bayes (HB) to estimate model parameters,
we chose to calculate measures of predictive accuracy directly from the conditional
posterior distribution produced as output from WinBUGS.  We used the available
WinBUGS diagnostic tests to ensure that the simulation chains had fully converged
and removed the burn-in (pre-convergence) part of the chain before calculating
posterior variances.  Dual Markov Chain Monte Carlo (MCMC) chains, rather than a
single chain, were used to facilitate the diagnosis of convergence.

Rao (2003) gives a formula for deriving the general posterior variance conditional on
the data, using a single MCMC chain.  Using similar notation as in Sections 3.2 and 3.3,
the corresponding single chain formula for the Bernoulli model is as follows,

where

θir = total predicted estimate of impairment type r for small area i,

ys = vector of sample data,

d = length of burn-in period for MCMC run (chain),

D = length of full MCMC chain, and

= the k-th MCMC chain sample value for Bernoulli rate parameter (p) for( )k
jrp

r-th response variable for person j.

The corresponding formula for the Poisson model is
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where λir is the corresponding Poisson parameter.

The above formulae apply to a MCMC simulation using a single chain, however these
formulae can be readily adapted for the case of multiple chains.

Other measures to assess the fit of the models have been used in the literature.
Nandram, et al. (1999) used three different measures to assess the fit of four Poisson
generalised linear models.  These were the posterior expected predicted deviance
(EPD), the posterior predicted p-value, and standardised residuals.  EPD is used to
rank proposed models, while the p-value is used as a goodness of fit measure.  The
standardised residuals are used to evaluate the alternative models.  For more details
and references see Dey, et al. (2000, pp. 101–2).

Figure 4.5 shows non-parametric splines fitted to the root relative posterior variances
(RRPV) for the Poisson and Bernoulli models for the physical impairment as well as
RSEs for the direct and demographic synthetic estimators.

4.5  Root relative posterior variance diagnostic: Physical impairment 

RRPV’s Poisson Area Model

RRPV’s Bernoulli Person Model

RSE’s of Direct Estimates

RSE’s of Synthetic Estimates
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Figure 4.6 shows the same diagnostic for the intellectual impairment.  Both graphs
show that the Bernoulli RRPV's are much lower than the corresponding measure of
accuracy of all other small area estimates.  The astute reader may regard this with a fair
degree of suspicion, and as we shall see this appears to be indicative of the substantial
degree of over-shrinkage exhibited by the Bernoulli small area predictions.  This
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serves as a good example of how relying solely upon RRPV's (or root MSEs) as a
measure of prediction accuracy can in some situations be misleading.

4.6  Root relative posterior variance diagnostic: Intellectual impairment 

RRPV’s Poisson Area Model

RRPV’s Bernoulli Person Model

RSE’s of Direct Estimates

RSE’s of Synthetic Estimates
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4.1.4 Additivity of proportions to one

In the case of disability, we are dealing with six impairment types, these being
physical, sensory, intellectual, psychiatric, head injury / brain damage and no
impairment.  It is clearly desirable for predicted impairment rates to sum to one in
each small area.  Models that preserve this additivity are clearly more appropriate than
those that don't.

Figure 4.7 below shows how well the direct SDAC estimates at small area level and the
predictions from each of the three small area models preserve additivity to one.
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4.7  Additivity of proportions to one

The SDAC and synthetic estimates ensure additivity of proportions to one exactly,
whilst the Bernoulli model predictions preserves additivity very close to one in all
small areas.  For those small areas where proportions don't sum to one, they are out
by at most about 2% in the case of the Bernoulli model.  Even though it doesn't have a
multivariate error structure, the Bernoulli model still preserves additivity to one quite
well because of its general multivariate form.  The Poisson model is quite
disappointing even though it is of a multivariate form.  At present we don't have a
precise explanation as to why this might be but we are keen to find out whether this
problem is resolved when Poisson over-dispersion is taken account of.

4.1.5  Additivity of model predictions to broad area direct estimates

The fifth diagnostic we've utilised is to compare the sum of small area model
predictions within a broad region to the direct estimate for that same broad region.
The broad regions should ideally be chosen as the minimum size region that affords
direct survey estimates with sufficiently low sampling error.  We have chosen state /
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territory as our broad region as it is an important administrative region and usually
possesses reliable survey estimates.  However the direct estimates of the smallest
state/territories such as the Northern Territory (NT), the Australian Capital Territory
(ACT) and Tasmania, have higher levels of sampling error compared with the other
states.  We have not aggregated these smaller states and territories, as they are still
important administrative units.

A model that produces small area predictions that, when aggregated, agree closely
with broad region direct estimates is more preferable to alternative models that give a
lesser degree of agreement.  Small area predictions can of course be calibrated to
ensure they do sum to the direct estimate at the state/territory level.  This can be done
either by using a technique such as iterative proportional fitting on the predictions
output from the model, or by using a constrained regression approach to incorporate
additivity as a constraint in the model estimation.  Brown, et al. (2001) recommend
first deriving small area predictions without applying either kind of calibration so that
the results of the intrinsic model against this diagnostic test can be assessed.  Either
calibration technique can then be applied, if necessary, to the model that performs the
best against all the diagnostic tests.

Figure 4.8 below shows the performance of the Bernoulli model in terms of additivity
to state for each impairment type.  The vertical axis shows the percentage relative
difference between the state direct estimate and the sum of the predicted small area
estimates.  As is to be expected, the graph shows that the relative difference is smaller
for the impairments types with larger populations.  The worst case is for the
intellectual impairment type, which varies from –15% to +25% in the larger states.  In
the smaller states the relative difference is more often negative than positive, because
direct estimates are commonly zero, due to small sample sizes, but the predicted
small area estimates are rarely is ever zero.
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4.8  Additivity of state – Bernoulli model, All impairment types 
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Figure 4.9 shows the results of additivity to state in the three models used for the
intellectual impairment.  The demographic synthetic approach performs best,
followed by the Bernoulli model.  The Poisson model performs very poorly and has
been excluded from this diagnostic graph.  We currently have no explanation for this
phenomenon.
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4.9  Additivity of state – Intellectual impairment type 
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Figure 4.10 shows the results of additivity to state in three models used to predict
small area estimates of physical impairment.  As for intellectual impairment, the
demographic synthetic approach performs best, followed by the Bernoulli model,
which ranges from –10% to +10% in the larger states.  For physical impairment, the
Poisson model performs only marginally worse than the Bernoulli model.

4.10  Additivity of state – Physical impairment type 
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4.1.6  Distribution of predicted small area estimates

The final diagnostic we have used involves plotting box plots of survey and model
small area estimates, for each impairment type, in order to compare distributions
across models.

Figure 4.11 shows these box plots alongside a box plot for the direct survey estimates.
The dashed, horizontal line passes through the mean of the direct survey small area
estimates.  Figure 4.11 shows that the SDAC direct survey estimates, demographic
synthetic and Bernoulli models all have very similar means.  The demographic
synthetic exhibits less variation in small area estimates than the direct survey
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estimates, while the Bernoulli model predictions show the least variation by far.  The
distribution of Poisson model predictions has slightly more variation than the
Bernoulli model but what is more worrying, it is the most biased when compared with
the other three distributions.  This is most likely due to over-dispersion in the Poisson
model, which has yet to be taken care of.  To adjust for the over-dispersion we
propose to use the negative binomial regression model approach of Lawless (1987), as
described in Chapter 6 of Dey, et al. (2000, page 94).

4.11  Distribution of small area estimates by model – Intellectual impairment type 

Figure 4.12 below shows the corresponding comparison of distributions for the
physical impairment.  The story for this impairment type is very similar to that of the
intellectual impairment.  The SDAC direct estimates and predicted small area
estimates from the demographic synthetic and Bernoulli models all share a very
similar mean, with the Poisson estimates appearing to be biased.  The demographic
synthetic estimates are slightly less variable than the direct SDAC estimates while the
Bernoulli estimates have the least variation.
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4.12  Distribution of small area estimates by model – Physical impairment type

 

An overly narrow distribution of model predicted small area estimates is referred to in
the literature as over-shrinkage and is not a desirable feature as the resulting
distribution of small area estimates under represents the true population distribution.
It is highly likely that the distribution of Bernoulli model small area predictions is
exhibiting over-shrinkage.  Possible reasons for this are firstly that the Bernoulli
model, in its present form, does not include random effects terms, and therefore does
not allow for variation between small areas, not explained by the auxiliary variables.
Secondly we are currently using only a limited number of auxiliary variables, which
may not be accounting for all the differences between small areas.  Work is currently
underway to fit the Bernoulli model with random effects terms and multivariate error
structure.
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5.  CONCLUSIONS AND FURTHER WORK

The disability empirical study has explored three small area estimation models
(demographic synthetic, Poisson (multivariate error structure with random effects)
and Bernoulli (multivariate with univariate error structure, no random effects)
models) to assess their relative performance against six diagnostic measures.  These
diagnostics are: bias, overlap of confidence intervals, posterior root relative variances
(PRRV), additivity of proportions to one, additivity to state and the distribution of
modelled small area estimates.

The Poisson model has performed poorly on just about all the diagnostics.  We believe
this has been due to one or both of two possible reasons.  Firstly that most of the
variation in disability characteristics occurs at the person level.  Hence a model such as
the Poisson, which uses auxiliary data only at the area level, cannot improve much
upon the precision of direct small area estimates.  Secondly, there is a significant
problem of over-dispersion with the current Poisson model, which is impacting
adversely upon the reliability of the small area predictions.  We propose to undertake
further work to implement a suitable method for accounting for this problem of
over-dispersion.

Although the Bernoulli model predictions have the lowest measures of prediction
error (PRRV), this is more likely to be due to over-shrinkage in the estimator rather
than an indication of high quality of the estimates.  Extreme caution therefore needs
to be exercised when interpreting measures of model prediction error and these
measures need to be carefully assessed in the light of results from other diagnostic
measures such as those discussed in Section 4.  Work is currently underway to further
improve this model by including a random effects term and a multivariate error
structure.  We also intend carrying out further work firstly into comparing our
measures of PRRV against the frequentist estimates of mean square error and secondly
into Bayesian methods for model checking such as those referred to in Section 4.1.3
and in Dey, et al. (2000, page 402).

There are a number of other statistical issues that could be addressed in future work.
The first of these is the inclusion of additional auxiliary variables, preferably at the
person level, to help further improve the fit of the models.  Census data, which
includes variables such as income levels, marital status, family structure, dwelling type,
is the most readily available source of auxiliary data even though it is not strictly
contemporaneous.  Another area for further work is the extension of these models to
take account of spatial autocorrelations of disability using approaches taken in the
field of disease mapping (Wakefield and Elliot, 1999; Pascutto, et al., 2000 and Elliot, et
al., 2000).
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