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SMALL AREA ESTIMATION USING A MULTINOMIAL LOGIT MIXED
MODEL WITH CATEGORY SPECIFIC RANDOM EFFECTS

Janice Scealy
Australian Bureau of Statistics
and Australian National University

ABSTRACT

This paper describes a model based approach to producing small area estimates of
counts for different categories of the Australian labour force based on a multinomial
logit mixed model with category specific random effects. By category specific we
mean that within each small area there are two correlated random effects, one
associated with the employed category and the other associated with the unemployed
category. Estimates of the model parameters are produced using penalized
quasi-likelihood combined with approximated restricted maximum likelihood
estimation and using these, estimated counts are then produced for each small area.
Mean squared error estimates of the estimated counts are approximated using two
methods: 1) a parametric bootstrap and 2) analytical approximations and we compare
the performance of both. Using a parametric bootstrap we also examine the
properties of the combined penalized quasi-likelihood and restricted maximum
likelihood estimators and discuss model goodness of fit measures and diagnostics.

Keywords: small area estimation, multinomial logit mixed model, parametric
bootstrap, labour force survey.
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1. INTRODUCTION

The Australian Bureau of Statistics (ABS) produces labour force estimates using direct
survey estimators for regions with large enough sample sizes for these estimators to
be reliable. In recent years there has been a growing demand for labour force
estimates to be produced in smaller geographical regions. The direct estimates for
these small regions are considered to be too unreliable because the standard errors
are large due to small sample sizes. A way around this is to produce model based
estimates which borrow strength from administrative and Census data and other types
of auxiliary variables. The hope is that the model based estimators will produce
estimates with mean squared error less than the direct survey estimators.

The model based approach relies on an appropriate choice of model and good
auxiliary variables. The aim here is to produce estimates for each of three labour force
statuses: employment, unemployment and not in the labour force for a set of small
areas. Auxiliary data are available within age/sex classes for each small area and sample
counts of the three labour force statuses are obtained from the Australian Labour
Force Survey. The total numbers of people within each sex/age group are also
assumed known and are obtained from the Estimated Resident Population (ERP)
projections published by the ABS (for further details, see ABS, 2007). Molina et al.
(2007) describe a methodology based on the application of the multinomial logit
mixed model which can be used to produce estimates in this small area estimation
situation. Random area effects are included in the models to account for potential
correlations between the age/sex class counts in the small areas not explained by the
auxiliary variables. The inclusion of random area effects in the model specifically
accounts for the area level variation not explained by the auxiliary variables.

In the model described in Molina et al. (2007), only one random area effect is used
within each small area and the random effect is therefore the same across the
multinomial classes. In our situation this may not be appropriate. Some work carried
out at the ABS on fitting three separate logistic mixed models to the data suggests that
the variances of the random effects are not the same across each category. A more
appropriate model would be to introduce category specific random effects. This
allows for the variances of the random effects to differ between the categories and also
allows for a potential correlation between them as well. In our case it does not make
sense to assume that the category specific random effects are perfectly correlated. By
allowing for a general arbitrary covariance matrix, Hartzel et al. (2001) make the point
that the model will be structurally the same regardless of the choice of baseline
category which is a good property.
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In this paper we extend the model in Molina et al. (2007) to include category specific
random effects. To estimate model parameters, we develop a similar penalized
quasi-likelihood (PQL) estimation scheme with approximate maximum likelihood
(ML) and/or restricted maximum likelihood (REML) for the variance components.
These parameter estimates are then used to produce estimated labour force counts
for each small area. Mean squared error estimates of the estimated counts are
approximated using two methods:

1. aparametric bootstrap, and
2. analytical approximations,

and we compare the estimates produced using these two methods. Using a

parametric bootstrap, we also examine the properties of the combined PQL and REML

estimators and discuss model goodness of fit. Unlike Molina et al. (2007), we also
consider estimation for out-of-sample small areas and briefly review some alternative
estimation schemes. Note that the primary focus of this paper is to give technical
details on how one might produce model based estimates for the Australian labour
force. This is an experimental procedure and the ABS will not be publishing any
model based estimates for the Australian labour force as part of the ABS product at
this stage.
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2. THE MODEL

Similar to Molina et al. (2007) let indexi (=1, 2,...,1;) denote the sex/age groups and
d(d=1,2,...,D) denote the small areas. We have a slightly different set up because 74
is not constant ({; < 10). The reason why we have unbalanced data is because some
of the sex/age groups within a small area have no sample and will be excluded from
model estimation since they do not contribute to the likelihood. The labour force
sample counts are denoted by y 41, Va2 and y 43 which represent respectively,
employment, unemployment and not in the labour force counts in sex/age group 7 in
the d-th small area. Let m g =y i1 +Vai2 +Vaiz denote the sample size and p i1, Paiz
and p 43 denote the respective probabilities of employed, unemployed and not in the
labour force. Let 4 and w4, denote the category specific random effects. We
assume that the vectors Vi1, Vaiz,Vai3)' given myg; and ug = (U1, uq) are
independent across d and 7 with multinomial distribution, that is with the probability
density function

md! i i yu’
S Waivs Va1 #0a) = ———= ’Péyiff P Dy (2.1)
Yain- Vaiz:Vaiz:
It is also assumed that forj=1, 2
Dayj
log—"=xy; B +uy, (2.2)
di3

where f; is a vector of parameters and x4; is a vector of explanatory variables
associated with the j-th category. Note that in (2.1) above, technically we should also
be conditioning on x4, that is, f should be defined as f(y i1,V a2 |#a, X 47)- 1t will be
assumed throughout this paper that whenever we condition on ¢, we also condition
on xz; even when it is omitted from the notation. We also assume thatz,; is
independently and identically distributed as bivariate normal and its probability
density function is

1,
1 —u,W, uy,
fu)=——e ?
27 |W,|?
where W, = ( e %2].
b2 P2

Under this model we have a vector of variance components ¢ = (g1, 92, p12)" that will
need to be estimated along with = (£, #5)". This model is a GLMM (generalised
linear mixed model) and to estimate the parameters a variety of different techniques
can be used. In the next section we discuss some of these.
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3. ESTIMATION OF S AND ¢

Let Y = Wan,Var) fori=1,2,....I;andd=1,2,...,D and let y be the vector
obtained by stacking the y4’s into a column. Using the definition of extended
likelihood in Pawitan (2001) we may write the likelihood function for 8, ¢ and
u =@Wh,ub, .. . ub) as

LBouw)=f(y|w)f(w)
D 1, D
=£H 11/ var Iud)J(Hf(ud)J- 3.1)

d=1i=1 d=1

Pawitan also notes that this definition of the likelihood is called hierarchical likelihood
by Lee and Nelder (1996).

For the estimation of f and ¢, ideally likelihood based estimation should be based on
maximising L(f, @), where

D 1, D
L(B,p) =J.(H 11/unvai |ud>J(H f(ud)]du
d=1

d=1i=1

D 1,
B H(J.ooj.oof(ud)[n S Yain> Vaiz | ud)JdudldudZJ' (3.2)
d=1 i=1

To estimate  and ¢ one could try to maximise the marginal likelihood defined at (3.2)
using, for example, Monte-Carlo methods or numerical integration techniques to
evaluate the integrals. A procedure like Newton-Raphson could then be used to solve
the likelihood equations since the equations are non-linear. More specifically,
Hartzel et al. (2001) describe an adaptive Gauss-Hermite, quasi-Newton algorithm
which could be used in the multinomial logit mixed model case. This method is
appropriate when the dimension of the integrals are small and the dataset size is not
large. In our case, the dimension of the integrals are small but the dataset size is large.
That is, there are a large number of double integrals to evaluate at each iteration and
convergence will therefore be very slow.

Another method which could be used to maximise (3.2) is to use an automated
Monte Carlo EM algorithm as described in Hartzel et al. (2001). Again this will be
computationally intensive in our case. The method consists of implementing an EM
algorithm which treats the random effects z as the missing data. In the E-step a
conditional expectation needs to be evaluated and this is approximated by using
Monte Carlo methods (actually, an independent sample from the conditional
distribution is generated). The M-Step is then undertaken by maximising this
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approximate expectation. At each EM iteration, the Monte Carlo sample size is
increased in an automated way until convergence. In any case, for computation
reasons we do not pursue exact marginal likelihood maximisation approaches further
here. Instead we will now discuss approximate methods.

The approach taken in Molina et al. (2007) is to use the PQL (penalized
quasi-likelihood) method introduced by Breslow and Clayton (1993) combined with
either ML (maximum likelihood) or REML (restricted maximum likelihood) for the
variance components. The PQL method of Breslow and Clayton (1993) obtains
estimates of f given ¢ by maximising an approximation to the marginal likelihood
L(B, p). Part of this approximation involves a Laplace integral approximation.
Estimates for ¢ are also produced as a by-product of the approximation and hence the
method produces joint estimates of f and & given @. As Jiang (2007) states, the PQL
method is equivalent to the maximum hierarchical likelihood method of Lee and
Nelder (1996) in the case of normality of the random effects. The maximum
hierarchical likelihood method obtains joint estimates of f and # by maximising the
hierarchical likelihood (the log of (3.1) in our case). Interestingly in the case of
normal linear mixed models the estimate of § obtained by maximising L(f, ¢) and
L(B,p,u) given @ are equivalent. But this is not the case in general for GLMMs.

As mentioned by Jiang (2007), Lee and Nelder (1996) showed that in general the
maximum hierarchical likelihood estimates of the fixed effects are asymptotically
equivalent to the marginal maximum likelihood estimates of the fixed effects. On the
surface this suggests that when the sample sizes are large, then to obtain estimates of
B, maximising (3.2) and (3.1) are equivalent. However as Jiang (2007) states, the
asymptotics here are in the sense of the cluster sample sizes approaching infinity, but
the number of clusters remaining bounded. This is not satisfied in our small area
estimation case since the number of clusters (small areas) is large but the cluster
sample sizes are small and bounded (< 10, since the sampled units are the age/sex
classes). Therefore estimators for f derived from maximising (3.1) will not be
equivalent to maximising (3.2) even as we increase the number of small areas in the
sample. As Jiang (2007) also states, there are a number of approximations involved in
deriving the PQL and these approximations have introduced bias into the estimates
and this bias does not vanish asymptotically (PQL estimators are known to be
inconsistent). When the cluster sample sizes are small there is insufficient information
to estimate both the random and fixed effects f simultaneously.

Hartzel et al. (2001) points out that PQL methods have been shown to be biased
especially for highly non-normal cases such as Bernoulli response data and biases tend
to increase as the variance components increase. Hartzel et al. (2001) suspect that a
similar problem will exist for the multinomial logit random effects model when the
multinomial sample sizes are small. In our case the variance components are
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expected to be small and the average 1, is approximately 13. Also note that the
number of multinomial observations per cluster is < 10. In most cases these are
exactly 10. Therefore the m 4 and cluster sizes might be sufficiently large together
and the variance components sufficiently small to allow the PQL estimators to work
reasonably well. This will of course need to be confirmed via simulation which is
undertaken later.

In any case, two issues have been highlighted so far. The first is the computational
difficulty of maximising (3.2) directly due to the presence of the integrals which have
no closed form solution and the second is the inconsistency of the PQL estimates
associated with maximising (3.1). These two issues give some motivation for trying to
come up with alternative estimators. Jiang (1998) proposes an alternative estimation
method called the method of simulated moments which is both computationally
attractive and results in consistent estimators. A set of estimating equations are
obtained by equating sample moments of the sufficient statistics to their expectations.
The expectations are then approximated by simulating sequences of normal random
variables (i.e. the integrals in the expectations are approximated by Monte Carlo
simulation). The equations are then solved by a Newton-Raphson procedure.
However, there is one issue associated with this method. Jiang (1998) shows that the
method of simulated moment estimators can be quite inefficient. For small samples
the method of simulated moment estimators seem to have substantially larger
variance than estimators based on PQL. So it appears there is a bias versus variance
trade-off when choosing between such methods as PQL or the method of simulated
moments. There are clearly issues associated with all estimators that have been
discussed so far.
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4. PQL ESTIMATION OF S AND u

To obtain the PQL estimates of f and # we need to maximise the log of the joint
likelihood defined at (3.1). Assume for the moment that the variance components ¢
are known. The joint log likelihood is

(P, u)—c——Zud\Vd ud+222ydlj logpdlj, (4.1)

d=1:i=1 j=1

where ¢ is a constant. The maximum likelihood estimators can be obtained by
equating the first derivatives of (4.1) to zero and then solving this system of equations.
Letg=1,2,...,Q; index the components of the vectors [3] and x4; and denote the g-th
component of each by ;) and x4, respectively. By noting that

exililﬁ1+u¢ll
Pan =
1+ eleilﬂ1+ud1 + ex;1'2ﬂ2+ud2
exiﬁzﬂz U,
DPai2 =
1+ e‘xililﬂl+udl + e-"iﬁzﬂz“‘udz
1
and Paiz =

1+ ex;z'1ﬂ1+”d1 + ex:iizﬂz tu,,

after some algebra it can be shown that forj=1,2,3;;' =1,2; g=1,2, Qs
i=1,2,...,lgandd=1,2,...,D,

0108 Paij | Xdij'(q) (1‘%") ifj=Jj’

aﬂ].,(q) ~X i Petiy otherwise

and forj'=1,2andg=1,2,...,Qy,

ol
a;ﬂ ) szdlj (q)(ydlf ~ My Payy ) (4.2)
J(q@)  d=li=1

Now we need to find the first derivatives with respect to the random effects. Again
after some algebra it can be shown that forj=1,2,3 ;7' =1,2;i=1,2,....I;
d=1,2,...Dandd =1,2,...,D,

1=pgy ifj=j andd=d'
—Da ifj# j'andd =d’

0 otherwise,
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and forj'=1,2andd' =1,2,...,D,

= (ydvyr _md'lpdll_]’ )
audjf i=1

Now we note that ford=1,2,...,D,

tvr—1.
and uW, uy =

-1
( 2 ‘/’12} _ 1 ( ?, _‘/’12j
P2 P2 PP, — (/)122 P2 N

1 2 2
> ((ﬂzudl = 200U Uy + Pl )
PP = P2

Therefore ford' =1,2,...,Dandj' =1,2,

IND -1 ———— (ot —Pputyr) i =1
a(‘zzd_ludwd “d) 010~ P

_—2((P1“d'2 — ) ifj' =2
PPy — P12

and hence ford' =1,2,...,Dandj' = 1,2,

ap.u) _

-1

-1

]d
> (¢2 Ugn —Pr2 Uy ) + Z(yd'z'j’ — My Paryj') ifj =1

O1P2 — P12 i=1

(4.3)

Id
———— (1 gy = Pr2 g )+ 2V =Mz Paryg) 17 =2

D192 — P12 i=1

Estimates for f and & are found by equating all the derivatives defined by (4.2) and

(4.3) to 0 and solving the resulting system of equations. Because these equations are

non-linear they cannot be solved directly. Instead they can be solved by using a

Newton-Raphson algorithm. In order to use the Newton-Raphson method we will also

need to work out all the second derivatives of the loglikelihood function.

Forj'=1,2;/"=1,2;4=1,2,...,Qy andg¢' =1,2,...,Q;» it can be shown that

O*l(B,u)

D 1 o .
Do 2o Ny Neip (qyMai Pay A= Payg) 17 = ]

B OB q)

14

D Id oot .
D1 Doi X (X (g Pai Pt ifj" # j".
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Alsoford =1,2,...D;d"=1,2,...D;j'=1,2and;" =1, 2,

_(0 1 : " ’ o .r
—22 - Ziil My Pain A= Pgn) ifd"=d andj" = j'=1
PP — P12

- 1 : " ’ Y .r
#2_Ziilmd'z'pd’iz(l_pd'z'z) ifd"=d" andj" = j' =2
PUBu) | P92
audw-naud/‘/ I . " ' . .r

s Lerziilmvad'ﬂpdvz ifd"=d" andj" # j
P1P2 — P12

0 ifd"#d’,

i .// ./
and ford" =1,2,....,D;j =1,2;j =1,2andg=1,2,...,Qy,

Id : o !
gy | ey O pay) W=
audv'"aﬂ o

TR I o
Zz’ilxd"l’j’(q)md”z'pd”l']"Pd",'j" ifj" = j'.

Similar to Molina et al. (2007), let 84 = (041, 04:2)", where forj=1,2,

0, =log Pdy .

D3

We can also write (2.2) as

O, =XuP+Z,u,

l
Xgi1 O1xg,
where X, = ,

l
Ono, Xan

Opoa-y 1 0 Opop-ay
Zd':

1

Oy 0 1 Opopeay

and O+« denotes a matrix of zeros with dimension a* xb*.
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Denote the mean and covariance matrix of y 4 given u as u4; and X4 and these are
— l
Hai =M gi(Paivs Paiz)

(Pdn A=bain)  —PanPan ]
and Zdi = mdi .
=Dan Pai2 Parx(1= Pai2)

Again similar to Molina et al. (2007), let Sy and S, be the vectors of first derivatives of
the loglikelihood. That is,

g — ol(B,u) ol(B,u) ol(B,u) ol(B,u) ol(B,u) ol(p,u) t
/ By , P2 ’ ’aﬂl(gl), Py ’ P2y , ’552@2)

ol(B,u) ol(B,u) ol(B,u) ol(B,u) Od(f,u) al(ﬂ,u)J[

and Su=£ 5 5 5 3 R 3
U U Uy Uy Upy Upo

In matrix notation we have

D 1,
Sﬂ - Z ZXEJZ (ydl' _/udz')
d=1i=1

~

4 D
Z;‘lz' (ydz' _/udz‘) - z Z;’chglzdlu
1

D
and S, = Z
d=1 d=1

i=

and the non-linear system of equations that we need to solve is described by
2
S :(52,5;) =0(0+0,+20)1 - (4.4)

Let
Jp be asquare symmetric matrix containing all the derivatives of §; with respect to f,
Ju be asquare symmetric matrix containing all the derivatives of §;, with respect to u,

Jp,, be the matrix containing all the derivatives of $,, with respect to .
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It can be shown that

D I,
t
Jp= —Z ZXdz'ZdiXdz' ;
d=1i=1
Dl
Jpu =22 XaiZaiZ ai
d=1i=1
0 & , & 1
and Ju==2. 2 ZuZuiZai = 2 Z\Wg Z gy -
d=1i=1 d=1

The Newton Raphson algorithm can now be applied to find the solution to (4.4). This
iterative algorithm has updating equations as follows

-1
ﬂ/e+1 ~ ﬂ/e B ]2 ]'Iéu S/e 45
kel ||k kot k ’ (35)

where the superscript & indicates the iteration number and the current values of all
parameters are used to evaluate the functions within. Note that in its current form
(4.5) contains a large matrix which needs to be inverted at each step. This term can
be further simplified by noting the following partitioned matrix identity given in
Henderson and Searle (1981)

Tou  Ju

(75Tl Ti) (5T pud i T5) T g

, (4.6)

—1 -1
T T Ts=Tpudd Tod) T+ 7 T T =T pud i i) Tpudid

for any square matrices Jz and J,, with J,, nonsingular and J; possibly singular. Molina
et al. (2007) also make use of this identity. Note that this identity simplifies the
inversion quite a lot since we no longer need to invert a square matrix of dimension
01+02+2D. Instead we need to invert Jg —]/iu]ﬁlféu and J;,. The matrix

Jp—=Tpudd T f, 15 @ square matrix of dimension Q1 + Q2 which is the total number of
explanatory variables in the model and is a lot smaller than Q1 + Q> + 2D since D is
large. As for J,, this is a a square matrix with dimension 2D which is still quite large.
But note that J,, is a block diagonal matrix with block sizes of 2. So all as we need to
do in this case is invert a series of 2 by 2 matrices which is trivial.
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So to compute PQL estimates of fand u we use the iterative formula (4.5) until
convergence (and using the identity given at (4.6)). An initial guess is needed for the
parameters to start off the iterations. We suggest using a small value of « as its initial
value and an initial value of f obtained by fitting a multinomial logit model without
random effects.

The criterion for convergence we use is one given in Booth and Hobert (1999)

‘ /e+1 ﬂ ‘
J(@) J(@) ,j=172 andq:l,z,...,Qj)
‘ﬂj'(q)‘Jrgl
max < &2, &7
k+1 R
\”df -~ '
rre— 7d:1,27.~-7D and] :1 2

where &1 and ¢; are both small positive numbers (we use ¢1 =0.01 and & =0.001).

In all of the above it was assumed that ¢ is known. In the next section we derive an
approximate maximum likelihood estimator of ¢ given the other terms. To obtain
joint estimates of B, # and ¢ we will need to iterate between updating each, where
and u will be updated using the algorithm in this section.
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5. APPROXIMATE ML ESTIMATION OF ¢

It was mentioned in Section 3 that for the normal linear mixed model, given the
variance components, estimates of f obtained by maximising L(f, @, u) are equivalent
to maximising L(f, ). However for the normal linear mixed model, given f, ML
estimates for the variance components based on maximising L(f, @,%) and L(B, p) are
not equivalent. This suggests that it is probably inappropriate to maximise L(8, @,%) to
get estimates of ¢ in our situation too.

To obtain an approximate marginal likelihood L(f, @), Molina et al. (2007) adapted the
ideas of Schall (1991) to their bivariate setting. We will follow this approach too.

Assume that f and u are known.

Ydij Yaij

=log

Let gj(ydi) = lOg
My = Vailt — Vai2 Yai3

forj=1,2.

A first order Taylor series expansion about the point x4 leads to

—L (ydz‘l —Hgn ) + /

P (J’d'z —ﬂd‘z), forj=1,2.
Wi, Vaizl,, Z l /
di di

8i(Vai) =8 (M) +

Let &4 =(810Vai) , 2War)) and eg; =23} (Y ar — ai )-

Calculating the expressions of the derivatives involved and using matrix notation, the
above Taylor series expansion becomes

i = XuP+Zu+ey,

where Var(e i |uy) = Z;} and E(eg; |ug) = 02x0.
It is also clear that E(E ;| g) =X B+ Zgiw and Var(E g |uy) =2}

Although it is not clear in Molina et a/l. (2007), on correspondence with the author the
following was established. The term & |1, is assumed to be approximately normal.
Since u is normal, this also implies that the joint distribution of €4 and u,; is
approximately normal and hence the marginal distribution of &4 is approximately
normal.

Let W = diag(W,,d =1,2,...,D). Now it is easily shown that E(& ) =Xz f and

Var (&) = E(Var (4| uy ))+Var (E(&;|ug)) = E(z;,} ) +Z,WZ, .

The matrix £ is a function of the random effects and we now need to assume that
this is approximately constant and hence Var(€ ;) = Z;l} +ZWZ,;, where the random
effects are replaced by their estimated values.
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Let & denote the vector that is constructed by stacking the vectors &; in one column
and V=Var(%).

Then V=2ZWZ'+27! where L =diag(Z,i=1,2,...,1;,d=1,2,...,D).

Now we can define the approximated normal log likelihood for ¢ as (ignoring
constant terms and assuming f is known)

l(p)=—3loglv|-3 (6 - Xp) V7 (6-XB),

where X is obtained by stacking the matrices X,;. Also let Z be the matrix obtained by
stacking Z;. Given f§, we can now obtain approximate ML estimates of @ by
maximising /(@) with respect to ¢. However, before we do this we need to simplify /().

To compute the PQL estimates of § and u, we use the updating equations (4.5). As
noted by Jiang (2007), the following alternative iterative procedure originally
proposed by Breslow and Clayton (1993) can also be used to produce the same PQL
estimates. That is, for fixed ¢ compute

= (XIV_lX)_l x'vle (5.1)
and a=wz'v'(¢-xB) (5.2)

where given & one may first use (5.1) to update B, then use (5.2) to update # then
update £ and so on until convergence. Note that we do not use (5.1) and (5.2) to
update f and u because (4.5) is computationally more convenient. However the form
of (5.1) and (5.2) is useful here because we can use these to help simplify /().

From (5.2), (5.1) and the results on page 446 in Pawitan (2001),
(e-xp) v (e-xp)=(-xp-zi)2(e-xp-za)+a'Ww a
and v]=[z|wlz'2z +w .

We can now write an approximated pseudo loglikelihood of ¢ as (ignoring terms that
are not functions of @)

1 1 IV D
1(¢)=—Elog|w|—Elog‘z’fzz+W |-Satw (5.3)

ABS * SMALL AREA ESTIMATION USING A MULTINOMIAL LOGIT MIXED MODEL ¢ 1351.0.55.029 15



Given current estimates of f and u, to obtain approximate ML estimates of ¢ we need
to differentiate (5.3) with respect to ¢, set the resulting three equations to 0 and solve
them.

In the derivation of /(p) it was assumed that X was constant and does not depend on
or . When this is the case, joint estimation of f, ¢ and u is equivalent to maximising
the function

OB, o,u)=1(B,p,u)— %log Z'sz+w! (5.4)

0 _aABew 0_dBew  00_de)

Sinee oB o8 ou ou o0 0

This justifies the following algorithm to obtain joint estimates of §, ¢ and u
1. Compute Band @ given @ by using (4.5).
2. Fixing fand u at their current values 3 and i, update @ by maximising (5.3).

3.  Iterate between 1 and 2 until convergence.

However this algorithm assumes that X is constant in (5.3). Pawitan (2001) notes that
this algorithm is appropriate when Z71is a slowly varying function of g (u is the vector
obtained by stacking all the ;). This means we can ignore the derivative of the
second term of Q with respect to f and u, so the first step is justified.

Pawitan (2001) notes that for certain generalised linear mixed models studied by
Breslow and Clayton (1993), estimates of the variance components based on
maximising (5.4) are close to the exact marginal likelihood estimates provided that the
variance component is not too large. The method tends to underestimate the
variance component, and the problem can be severe for large values of the variance
component. However in our application, the variance components are expected to be
small, so hopefully this should not be too much of an issue.

We now need to maximise (5.3) and to do this we need to differentiate this function
with respect to each component of ¢. Fora=1,2 and 12,

(@) :_1alog|W| _1610g‘ZtZZ +W/_1‘ _laut\V_lu

oo, 2 Ogp, 2 09, 2 Og,
1 -1 -1
I B L (Z’ZZ+W/_1) W Ly W, s
2 op, | 2 o9, 2 Op,

where 77| | denotes matrix trace.
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After some algebra, it can be shown that

Tr[W/‘l aW}= D, -
0 | o —oi;
TT‘{W_l w - Dn 5
o0 | oo, -,
and T;{W‘1 w = —2D(/)122 .
0Py, 1 99 =¢p
-1 D 2
1 J—
Also, ' agV = : z u;{ 2 ¢2¢212Jud’
£ ((01602 _(0122) N I
~1 D 2
1 —
ut ow "= . Z u;[ P12 ¢1¢122Jud
0P, ((Pl(ﬂz _¢f2) d=1 PP~
1 D 2 —( 2 4 )
; OW ™~ 1 , P129> P2 T P19
and u u= z U, u,.

Wi (ppmr) O (ldhran) 200

Now ford=1,2,...,D let
I
da1 = Ziil M g; Dain (1= Dy ),
I
Qa2 = Ziil Mg Pain(1— Pgrp) and

— Id
9az = Z,-Zl Mg PaiPaiz -

After some algebra it can be shown that

-1 oW !
o

Tr[(z"‘zz +W‘1)

_i dan 00+ 02 (14204301 + 4202 )

(5.6)

(5.7)

(5.8)

5.9

(5.10)

G.11)

a=| (-t +¢1¢z)((1+qd3¢12)2 H2a2 =420 )02+ dar (01~ 42 0F2 + 2 (02))

)

(5.12)
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_ -1
T{(Zfzzwzf‘l) Low }:
op,
_i P+ A PL + 204301 P12 + A P
2 2 2 2
d=1 (—%2 +¢1¢2)((1+6]d3¢12) +(0]d2 —6]d3(ﬂ1)¢2 +49.1 ((01 ~da2912 +4d2¢1(ﬂ2))
(5.13)
and
_ -1
T{(ZTZ +W‘1) LW }
0Py,

2
((012 T4 1P P02t 903P02 Y9031 P2 T 442P12P2 )

=

a=| (ot _¢1¢’2)((1+4d3¢12 V' (02~ 2501 ) 02+ 1 (01— 4208 +qd2¢1¢2))
(5.14)

By substituting the relevant terms (5.6)—(5.14) into (5.5), we can now calculate the
first derivatives of /(@) with respect to @1, @2 and @12.

t
Let s —| g dlp) dg) |
? opy  0p, Oy,

To obtain an update for ¢ given f and u we need to solve S, =034;. The multinomial
model described in the paper Molina et al. (2007) has one variance component. In
this case, an explicit updating formula is available for the variance component based
on rearranging the single equation

daip) o
de

An experiment was undertaken to determine whether simple updating equations
could be obtained by rearranging the equations S, = 035 but we could not get it to
converge. Unfortunately we will need to use a single iteration of the Newton-Raphson
algorithm to update ¢ instead, which means we will also need all the second
derivatives of I(@).
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After some algebra it can be shown that

2 D 3 — 00>
0 l(gﬂ):_ 1 ; Zu;’{ % ) (0212¢2Jud
ol (_%22 + %) d=1 Q@ PR

D (41 + dunaz02~a2502)
+ ’

2 )
=1 2((1+4d3¢’12 )2 +(4d2 _%213(01)(/’2 +qa0 ((01 _defﬂlzz +4d2¢’1(/’2))

2
20005 - ((0132 + 01010, )

2 D
’lp) _ 1 S u,

Uy
3 2
00109, 2(—(/)122 +(p1qoz) d=1 _((P132 +(P1¢’12€02) 20191,

2
(Qda ~dada2P2 t 6162136012 )

)

d=1

2 )
2((1+qd3¢12 ) (042~ 23301 )02+ dr (1~ 0200 +qd2¢1¢z))

2 2
521(@ - 1 i y —401,0; ?> (36012 + (/’1(P2) 5
d d

P01, 2(—(p122 + @0, )3 d=1 2 (5(0122 +¢’1¢’2) _2((/’132 +¢’1¢12¢’2)
_i (%13 ~4da19q42912 +%213(P12)(61313¢’2 ~da (1+qd2¢2))

(14 dasre) + (a2~ @501 )02+ 4 (7 - 4ol + d020102)

2 )

2 D 2 _ 2
g1 2”2’[ ot (pl;plZJud
op; (—(p122 + (p1¢2) d=1 01912 (4]
5 2
D (de Tda19a291 —4da3P )

+2

2 )
d=1 2((1+6]d3(012 )2 +(qd2 —6]§3¢1)¢2 tqam ((01 ~da2fi> +0]d2¢1¢2))

—2((p132 + 010120, ) P1 (350122 TP )

ol 1 D
(@ __ = u,

000, 2(—(p122 +¢1¢2) d=1 o (3(0122 +¢1(ﬂ2) —46012%2

D (Oldz 94194291 ~ 46213(01 )(qdﬂdz(ﬁu —4a3 (1 T49a43912 ))

2
! ((1 tqazPr2 )2 + (de ~da30) )(Pz +tdm (401 ~ 44200 + 402019, ))
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0 (30h+00) (0 + 301000,

2 D
olp) _ 1 ZuZ

o atema) 5 i siaoe) e ran) |

2

+§: 2(%3 ~dndaxPr2 + 6]6213(/’12)
d=1 2 2 2

((1+ Gastr2) +(0a2 = 0030 ) 02 + Qs (91~ 202002 + 2020102 ))

D

2

~(4a19a2) + 943 '
(14 4a30) +(002 = 42301 )02 + s (91~ 20> + 4020102

Now let

gy  lp) i)
82(/11 P09, 0109,

Oup)  Up) i) |
0P 09, 0%p, 0P,001,

llp)  lp) Ol
0p0p,  0P00, oy,

To obtain an update of ¢ given f and u we simply compute

update __ __ previous -1
4 =0 _] ® S(/) )

where all terms on the right hand side are evaluated using the current values. Only
one update is needed because after ¢ is updated once we then have to go back to
updating B and u by using repeats of (4.5) until convergence given the current value
of .

The iterative algorithm for computing joint estimates of f, # and ¢ stops when both
(4.7) and the following condition is satisfied for all three variance components

update __previous
a Pa

R < 82 )
previous

Pa

+&

where subscript @ denotes the particular component.
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6. APPROXIMATE REML ESTIMATION OF ¢

Approximate REML (Restricted Maximum Likelihood) estimation could also be used as
an alternative to approximate ML estimation for estimating ¢. This approach was also
undertaken by Molina et al. (2007).

For normal linear mixed models, it is well known that in some cases the ML estimator
of the variance components can be downwardly biased (see page 235 of Rao and
Kleffe (1988)). As mentioned in Harville (1977), one criticism of the ML approach to
estimating variance components is that the ML estimator takes no account of the loss
of degrees of freedom for estimating the fixed effects f. For estimating the variance
components, f# can be considered as a nuisance parameter. A way of eliminating the
influence of B is to construct a marginal (or approximated marginal) ML estimator for
the variance components. In the normal linear mixed model case, this involves
transforming the original observations such that the new data are independent of
and then maximising the likelihood for the variance components of this new data.
The transformed data are called error contrasts as described in Harville (1977) and
have smaller dimension than the original data.

In the normal linear mixed model case, the REML loglikelihood can be derived as a
modified profile likelihood (see pages 286-292 in Pawitan (2001)). In our case the
approximated REML loglikelihood is proportional to

l(¢)—%log‘XfV_1X‘, 6.1)

where /(g) is given by (5.3) and as Pawitan (2001) mentions, the second term can be
interpreted as a penalty term, subtracting from the profile loglikelihood the
‘undeserved’ information on the nuisance parameter (which is f). To obtain
approximate REML estimates of ¢ in our case, we simply need to maximise (6.1) which
can be done using similar methods to what is described in Section 5. That is, we need
to implement the same Newton-Raphson algorithm except that now S, and J, contain
extra terms. These extra terms can be obtained by finding all the first and second
derivatives of the second term in (6.1) with respect to all the variance components.

Although we are potentially reducing bias by using the approximated REML estimator
we should keep in mind that the variance may be larger than the variance of the
approximated ML estimator. Therefore in some situations the MSE of the
approximated ML estimator might be smaller. See Harville (1977) for further details
for a discussion in relation to normal linear mixed models.

In any case we need all the first and second derivatives of log | X'V1X]|.
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Fora=1,2and 12,

dlog|x'v'x -1
‘ ‘ - (X V_lX) Y x|
o9, 0P,
-1
Now Vv Nyt g1z W gy
99, 09, 09,

and therefore

olog|x'v x| " oW

o9,

ow , 1 0 ) 0 0 . 0 1
where —— =diag or diag or diag ,
op, 0 0 0 1 10

depending on which value of ¢ is chosen.

{(XIV_lX)_l xviz% V_lX} (6.2)

o9,

On first glimpse (6.2) looks quite difficult to calculate, but note that the matrix within
the trace is only a Q1 + Q> dimensional matrix in total. Because V. and W are block
diagonal (Vhasd=1,2,...,D blocks each of size 21 ;) simplifications can also be made
within the matrix multiplications in the calculations.

Now we need to calculate the second derivatives. Fora=1,2,12andb=1,2,12,

o’ loglx'vix 4 -1
‘ ‘ 277 (XfV‘lx) xvig W V&
09,00, op, O,
-1
olx'vlx
—Tr ( ) XV_lzaWZV X
a(pb 8(pa
_ T;{(XtV_lX) x'viz SW Z'v ! SW z V_lX}
P, Dy
-1 -1 -1
+Tr (XfV‘lx) x Y X(XfV‘lx) xviz WV i1y
6¢b 5(%
_ T;{(XtV_lX) x'vlz SW Z'v! SW z V_lX}
P, Dy
-1
Ty (XtV_lX) xvizW 4 V‘1X(X V‘1X) xvizg WV gy-ix |
a(Db a¢a

22 ABS ¢ SMALL AREA ESTIMATION USING A MULTINOMIAL LOGIT MIXED MODEL ¢ 1351.0.55.029



Now let

l
. alog‘XfV‘lx‘ 610g‘XtV_1X‘ alog‘XfV‘lx‘

S, =8,——
v 2 o9, 0,

and

o’loglx'vix| &*loglx'vix

0Py,

o*log|X'v'x

g, 0109, 0100y,
[ 1| @ log|x'V'X| d’log|X'V'X| &*log|X'V'X
RS o000, *p, 00,001,

O’loglx'vx| &*loglx'vix

*log|x'vix

000y, 00,00,

where S, and J,, are as defined in Section 5.

To obtain a REML update of ¢ given fand « we compute

update __ revious * -1 o*
PP = oP ~(Jp) S,

where all terms on the right hand side are evaluated using the current values.
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7. EMPIRICAL BEST PREDICTION, SMALL AREA ESTIMATION
AND A NOTE ON MSE ESTIMATION

Now that we have derived the PQL and REML estimators of the model parameters, we
would like to use these to help predict the small area totals of employed, unemployed
and not in the labour force. These sets of totals are, forj=1,2,3andd =1,2,...,D,

1, I
_ r
Sy =D Vay + D Vay
=1 =1

where yZﬁj denotes the total non sample in small area d, age/sex group 7 and labour
force class j. Note that /=10 (total number of age/sex classes within a small area). In
previous sections, summations were defined using /; and classes I;+1, ...,I were
excluded because they did not contribute to the likelihood functions since there was
no sample in these classes. However, we now need to include these.

Obviously we cannot use 4 directly because all the yfﬁj are unknown. If we knew the
values of fand u then we could estimate d,4 using

1, I
S r
Oy = 2, Valy * D2y
i=1 i=1
exélilﬂl+udl
m’, ifi=1
di [} + i N J
1+ exdilﬁl Un 4 exdzzﬁz Uy
h - , ex:/ﬂzﬂz"'udz
where Ui =My ifj =2
Y ! 1+ eximﬂ1 tUa exzﬁzﬂz“‘“dz
1
r of .
md~ lf] = 3
! 1+ ex:ﬁlﬁl U + exfzzzﬁz tu,, ’

and m7, is the total non-sample in sex/age group 7, in small area ¢ and these are

assumed known. Again 0, cannot be used here directly since f and % are unknown.

The prediction problem we now have is one where we need to predict
I
_ r
T&{]’ - Z ﬂdzja
i=1

forj=1,2 (=3 is not needed since it can be obtained via subtraction since m7;, is

known). There are two ways to predict 74. The first is to simply replace 2 with the

PQL estimate # and replace f with the PQL estimate B
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1
That is, Ly =D s (7.1)
i=1

where the hat on /‘Zﬁj means that we are using estimates of f and « within this
function. This is the approach taken by Molina et al. (2007). An alternative way of
predicting 7, is to use an empirical best predictor (EBP) as defined by Jiang (2007, pp.
143-144). Assuming that fand ¢ are known, the best predictor in the sense of
minimum MSE of 74 would be

E(ry |y) = _[ijjofcyf(ud 18,034 ) ity .

An empirical best predictor replaces fand ¢ in the integral above with respectively the

PQL and REML estimates ﬁ and @. The double integral above has no closed form
solution but we could approximate it using Monte Carlo methods.

Because we need to approximate the double integrals in EBP using Monte Carlo
methods, this adds to the computation time and MSE estimation becomes a problem.
For instance, bootstrap MSEs (and those based on other resampling methods) are not
computationally feasible for EBP. Alternatively Jiang (2007) on page 144 describes a
method of approximating the MSEs of EBP based on a Taylor Series expansion that
gives an estimate whose bias is corrected to the second order. However in the
derivation it is assumed that the estimates of f and @ have certain properties which
PQL estimators may not satisfy (see page 158). Therefore these MSE estimates may
not be correct to second order in our context. Another problem with this MSE
estimator is that one of its terms relates to the expected value of the EBP squared over
the distribution of y and this calculation is not computationally feasible for our model.

One advantage of using the estimator at (7.1) is that MSE estimation is relatively
straight forward. Bootstrap MSEs are computationally feasible or alternatively,
estimators based on Taylor series approximations can be used. In particular the
Taylor series approximation method in Molina et al. (2007) could be extended to our
category specific multinomial mixed model case. In any case it is not even clear
whether the MSEs will be smaller for the EBP than those for (7.1). Therefore at this
stage EBP is not recommended.
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8. ANALYTICAL APPROXIMATION OF THE MSE

For reasons discussed in the previous section we will be using the PQL estimators of
and u along with (7.1) to predict the small area totals. To approximate the MSEs of
these small area total estimates, we use a similar approach to the one described in
Molina et al. (2007) based on an analytical approximation. We begin by briefly
outlining this approach and then later in this section we describe the technical details
of the MSE approximation.

As mentioned in Molina et al. (2007), under linear mixed models, Prasad and Rao
(1990) obtained an analytical approximation of the MSE of an estimator of the type
1(®) = A'B+m'i where 1 and m are vectors of constants and v and  are respectively
the vector of variance components and the estimated vector of variance components.

The Prasad and Rao (1990) approximation takes the form

MSE (1(D)) = G (v)+ G, (v) +G3(v)

and the estimator is given by

MSE (1(8)) = Gy () + Go(8) + 2G5 (D)

which corrects for the bias in the G1(D) term. In the derivation, Prasad and Rao used a
result from Kackar and Harville (1984) who showed that under certain conditions

MSE (t(9)) = MSE(t(v)) + E(t(D) — t(v))*).

In the Prasad and Rao context

MSE(1(9)) = G(0)+G,(v) and Gs(v) = E((1(D)~1(v))*)

and Prasad and Rao (1990) proposed a new approximation to G3(v) relevant in a small
area estimation context.

Prasad and Rao’s formula was adapted by Baillo and Molina (2005) to a multivariate
mixed linear model and a multidimensional parameter. Both the Prasad and Rao
(1990) and the Baillo and Molina (2005) MSE estimators are for linear mixed models.
These estimators can be adapted to our context by noting that our model can be
written as an approximate bivariate linear mixed model (see Section 5 for further
details). In our context we use the predictions (7.1) for the non-sample labour force
counts and in order to apply the Prasad and Rao (1990) and Baillo and Molina (2005)
MSE approximations, we need to linearise (7.1) using a first order Taylor series
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approximation (Molina et al. (2007) use a similar approach). This then results in a
MSE approximation of the form G1(@) + G2(@) + G3(p). There is also an additional
term needed called G4(@) which is added to the above MSE approximation. This extra
term comes from the fact that we are estimating the actual non-sample counts %; Vi
and not simply Tz,jwhich introduces additional variability (this extra term is also found
in the MSE approximation in Molina et al. (2007)).

Note that the multivariate linear mixed model in Baillo and Molina (2005) is different
from our approximate multivariate linear mixed model. In Baillo and Molina (2005)
there is only one random effect associated with each small area and we have two
correlated random effects in each small area. Therefore the formulas in Baillo and
Molina (2005) cannot be immediately applied to our case. Nonetheless we are still
able to produce a MSE estimator but note that it cannot be guaranteed to be accurate
to a known order even if the multivariate linear mixed model was not an
approximation (a more detailed and rigorous proof along similar lines to pages 7-17
in Baillo and Molina (2005) would be needed for that). In any case, we show in later
sections that our MSE estimator performs well. We now derive this MSE estimator.

Ford=1,2,...,D,letd,;=(041042)" be the vector of small area totals that we are
interested in predicting (note that the third total within each small area can be
obtained via subtraction). Now

1 1 1
561 = zydz' +21u2i +Z(y2i _lu:ﬁ)’

i=1 i=1 i=1

where y 4 and y7,; are respectively the vectors of sample totals (known) and
non-sample totals (unknown) and

I3
;= (Pains Paiz) (8.1)

where m; is the total non-sample which is assumed known.

Now define
. I I I
r
oy = Zydz + Zﬂdz' = Z.ydz' +7,
i=1 i=1 i=1
. I I I
and SO0 =D Vai+ Dy =D Var +4 (8.2)
i=1 i=1 i=1

where ﬁ:h is (8.1) with the &’s and f’s in p 41 and p 4, replaced with the PQL

estimates # and .
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The estimator 4 is used to estimate §,4. We will define the MSE matrix of 84 as
st (8,) = £((64-8,)(8. o) |
:EU&—&+@—%K@—&+&—@YJ
=EU@—@X&—&Y}EU@—%X&—%Y} 3)
The MSE matrix contains MSE () and MSE(J,, ) and the cross product term
({6000 )(302-022)
Note that the terms
EU@_%x@_@yj
and EU&—@M@—%Y}

are omitted from (8.3) because these are matrices containing all zeros. This is

because given © 4, d,4—04 and é ; — 4 are independent.

Hence EU@_%X@_@[%E@«@_%wmpﬁ@—@y

and note that E((Sd -5, )‘ud)=02X1.
By a similar argument,

EU@_@x@_%yj=%ﬁ.
Now

E((sd -8,)(84 —Sd)fj=g((fd r)(Eata) )= MSE(2,)
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and

E (i(yfﬁ ~ M )J[i(yéi _ﬂ:ﬁ)T

i=1 i=1

E@@_%x@_%yj

i=1

il E {i(yfﬁ—uZﬂ)](le(yé}f—uZﬁ)]t g

1
=E 22;], 8.4)

Pant (1= Pan)  —PanPar
—DainPuiz Paiz(1=Daiz)

where 222 = m:ﬁ

The term E(Zle 22’:’) cannot be further simplified because X/, is a non-linear function
of the random effects and the expectation involves an integral with no closed form

solution. To estimate this term we can use (as in Molina et al. (2007))

1
i=1

where £/, is Y7, with the #’s and f’s within replaced by the PQL estimates # and B
Now we need to further simplify and approximate the matrix MSE(Z ;).

S . I .
By definition, T, = ZZ,:l A

and each of the fi,, can be written as functions of

A A A t
adz' = (edz'l’ 9dz’2 )
where édl' = XdZ-IBA + Zdl'l;l .

We can now calculate a first order Taylor series approximation for each of the vectors

A about the point 4. This approximation is

/Al;’z' ~ ﬂg'i + 22’1' (edz' - edz' )
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and hence

1 i
A r AN 7
Ty —Tg~ D %060, — > 206
i=1 i=1

Ji X Ji
= ZZ:&' (Xdz'ﬂ +Zdz'7’2)_2221’ (Xdz'ﬂ +Zdz'u)

i=1 i=1
=Ty —Tq>
where 7, =K, ,f+M, u
and ’l'AéZ:Kdﬂ-i‘Mdlz,
N
where Ky=2  ZuXu
_\! r

Technically K; and M are random variables since Z; is dependent on #,. However,
from this point forward we need to assume that K; and M are constant and do not
depend on #,. Note that this will be a reasonable assumption if the variance
components are small. Now, using the fact that 2, -7, ~ %, — 7/, it follows that
MSE(% 4) ~ MSE(z.;) (Molina et al. (2007) also make this assumption) and therefore

S5 () = (2 =) (-7

= B((#, ~ 24+ 2 —70)(Ey~ a2y -7 ), 85)
where f&:](dﬂjLMd[t

and f and # are the estimates of f and # assuming that the variance components @1,
@2 and @1 are known.
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As noted in Section 5, the PQL estimators can be obtained via equations (5.1) and
(5.2). So we can write

8= (Xfx?‘lx)_l x'vleg,
a=wz'v'(&-xp),

B = (XfV‘lx)_1 x'vle (8.6)

and a=wZz'v'(&-XB), (8.7)

where V=2ZWZ' + £ and V=2ZWz' +$ . Note that W is W but with @1, 92 and @1,
within replaced with either the approximated ML or REML estimates. Also, 2_1 is just
T~ but with B and % within replaced with the PQL estimates (which are also
technically functions of §,, , and 9,,).

Baillo and Molina (2005) apply a result which was derived by Kackar and Harville
(1984) in a linear mixed model setting. We will also apply this result and assume that
the estimator of the variance components is translation invariant. This assumption
means that we can further simplify (8.5) to

S A R (A AR A VA (CAEACAAY
= (8~ )2~ ) )+ MSE(%,). (8.8)

To approximate the first term in (8.8) we note that 2,; = ¥.4(@) and % = ¥4(p), where
@ =(p1.92¢12)". This only works if we assume that S is not a function of 7
(technically 4 is a function of & and B which are themselves functions of §). With
these assumptions we can now approximate %;, —%’Li using a first order Taylor series
expansion like in Kackar and Harville (1984). Here though we are in a bivariate
setting.

. N/ N/ N/
First let ¥, = (% 41,% ), then
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This then implies that

E((#—eu)(Es—50) ) = E[g“ gj

812 82

where forj=1,2and k=1,2,

_ 0ty o7y, 2 0Ty 0ty . 2, 0Ty 07y, 2
— o -o) +—— ( ) +5(P12 d01, (P12 —12)

+ Oy Oay + 5Td] Oay (‘/31 _¢1)(¢312 _(Plz)

ot o7, 0Ty oF . .
< Tdk+ G 2k (¢2_¢2)(¢12_¢12)~

Now let forj =1, 2,

8%;{] _(éf[dj 8%;{] 82'6,]]
op ,5(02 0Py,

. Oty \( 0%y \ o
Now assuming that the elements of each of , for each combination
4

op 0
of j and &, are approximately independent of the elements of (¢ — ¢)(@ — ¢)’, then
PR t g &
E((’rd _Td)(rd 7d) ) [ « ] , (89)
g

where forj=1,2and k=1,2,

& rrlﬂ([ﬁaq) }(agfjle((é@(éwl)]-
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This idea is motivated from Kackar and Harville (1984) and is also applied in Prasad
and Rao (1990) and Baillo and Molina (2005).

The term E((@‘(D)((a_(”)t)

can be approximated by using the inverse of the approximated observed Fisher
information matrix. That is, if approximated ML is being used for the variance
components then we can use the final value of -J,! from Section 5. Or if
approximated REML is being used for the variance components then we can use the
final value of —];1 from Section 6.

ot =\
As for the other terms gl =4 Ot
op op

forj=1,2and k=1, 2, these can be simplified further by applying some ideas from
Prasad and Rao (1990) and Baillo and Molina (2005) with some adjustments. We do
this now.

Note that "r';; can be written as follows

, (ﬂn} [Kdlﬁ+Mdlaj
Td = ., = N _ ,
Taz) \Kgoff+M ot
where K,;; and K, are respectively the first and second rows of the matrix K.
Similarly, M ;; and M, are respectively the first and second rows of the matrix M ;.

Forj=1,2 we have
Zy =Ky B+Mya
=K, (va—lx)‘l XfV—léz_'_MdjWZfV—l(é:_Xﬁ)
=K, (Xtv—lx)—l x've +MdjW/Z[V_1 (f—X(XZV_lX)_l XtV_lé‘j,

Now substitute £ =X+ Zu +e into the above equation and after some algebra and
some simplifications we obtain

+(1< y (XtVle)il X' MWz (Vl —V’lX(X[V’lX)fl X’Vljj(Zu +e).

ABS * SMALL AREA ESTIMATION USING A MULTINOMIAL LOGIT MIXED MODEL ¢ 1351.0.55.029

33



Now fora=1,2 and 12 andj =1, 2 we have

Ky ()(fV‘l.X)_1 xv iy

o7,
afay :6i . (Zu+e)
ba  OPa MdjWZ’(V_l—V_lX(XZV_lX) XfV‘lj
oM, wz'v!
~ (M )(Zu+e). (8.10)

o9,

The justification for the above approximation can be roughly explained as follows.
The terms that we are ignoring contain the term (X*V-1X)~!. This term is expected to
be small and negligible if the number of small areas D is large (which is often the case
in practise) compared to the number of parameters in 8. This is because (X*V-1X)71 is

the approximate variance of f which gets smaller as the sample size increases.

Using the approximation (8.10) we can now write forj=1,2 and k=1, 2,

~, ~ NI
5 az’d] afd]
op )\ Op

~ a(M”’f;V; V) E((zuve)(zu+e) )

o(Mywz'v) [

op

o(mywz'v)

. . a(Md,e\Vz’fV‘l) t

(8.11)

To approximate each of the matrices given by (8.11) forj=1,2 and & =1,2, we simply
calculate the derivatives and then replace the unknown parameters by their estimated
values. To calculate the elements within the matrices we can use the following
simplifications which we obtained after some algebra.
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Forj=1,2andk=1,2anda=1,2,12and b=1,2,12

t

o\M,wz'v? o\Myuwz'v!
( d ) v ( ) =M, W gy 1z Wy,
09, oy 09, oy
-My W yry-1z W 4 vizwMly, -MWwZ'v iz — Wiy~ ZalMd,e
29, oy 09, 0Py
+ M WZ'VZ — W yiy-17W 4 'vilzwml,.
8(0(1 a(Db

(8.12)

So we can now fully approximate E((fé, —t, )2y -, )[) .

Next we need to approximate the matrix MSE("Z"/d). To do this we follow almost
directly the approach taken in Molina et a/. (2007) and after some algebra we obtain

terms very similar to those obtained in that paper.

By definition
#, -1, =K,B+M,ii—K,8-M u. (8.13)
-1
Let Mm=v! —V‘lx(XfV‘lx) x'v!
-1
and pP= (XfV‘lx)

and substitute (8.6) and (8.7) and E=Xf+Zu +e into (8.13). We then obtain
&y -ty = (K PX'V T+ M,WZ'TL)(Zu+e) - M gu
and hence
(Za =) (Eu=74)
= (K PX'V + MW Z'TI)(Zu+e)(Zu+e) (V' XPK) +T1ZW M}, )
+ Mguu' My - Myu(Zu+e) (V' XPK}+TIZW M, |

~(KaPX'VT 4 MW Z'TL)(Zu+ e )u' M. (8.14)
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Now E((Zu—ire)(Zu—i-e)t):V,

and so after the above substitutions and with some further simplifications we have
E((f’d ~2) (% -7y ) =K, PK,-K,PX'V'Zw M,

~M,WZ'VXPK, + M, WM\, -M,WZ'TIZW M. (8.15)

-1 t -1
Now let T :(W +Z zz) (8.16)

and we will need the following identity from Henderson and Searle (1981) (for
example)

vi=s-3277'%. (8.17)

After some algebra it can be proved that

vizw =3xzT (8.18)

and wz'vl=71Zz's. (8.19)
Using (8.16)—(8.19) we can further simplify (8.15) to
E((f;, -ty )T, -1y )[) =M, TM!, + K ,PK!, + M ;TZ'3XPX'3ZTM,
-K,PX'3ZTM!, - M ,TZ'2XPK,
which on collecting terms is
E((f;, —)) (&) -7 )f) =M, TM; + (K, -M,TZ'zX |P(K,, —Mde‘zx)t .

To approximate the above equation we simply substitute in the estimates of f, & and ¢.
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We now have a formula to approximate the matrices MSE(Sd). This approximation is

MSE(8,) =G, (§)+G, () +2G;(9)+G, (9), (8.20)
where G, (§)=M, M

t
)

G, (p)=(R, M 12'3X | P(R, - M, 12'3x )
G4 (é) - 21:221
i=1

and G3() is given by (8.9) with estimates substituted in and with some further
simplifications such as (8.12). Note that G3() is multiplied by two in the above
approximation. This is because as in Molina et al. (2007), E(G1(9)) = G1(p) — G3(p)
and we therefore multiply G3(9) by two to correct for the bias. The proof that

E(G1 (@)) ~ G, (p)—G;(p) is given in the Appendix.
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9. OUT-OF-SAMPLE SMALL AREAS

All previous sections implicitly assumed that ford =1,2, ...,D, each small area had
some sample in at least one of its age/sex classes. Now suppose that as before we
have d=1,2,...,D in-sample small areas, but we now have an additional set of R small
areas with no sample. We can still produce estimates and MSEs for these
out-of-sample small areas, but a slightly different methodology needs to be applied.

In total we have d=1,2,...,.D,D+1,...,D+R small areas that we wish to produce
estimates and MSEs for. For thed =1,2,...,D small areas in sample we simply follow
the methodology in the previous sections (discard the out-of-sample small areas for
estimation of parameters, small area totals and MSEs). The rest of this section
discusses estimation for the out-of-sample small areas.

Given our model, the best prediction we have of the out-of-sample small area random
effects (ug1,up) ford=D+1,D+2,...,D+Ris (0,0)". This is because in our model
we are assuming that the random effects are independent between small areas and
knowing what the observed in-sample data are does not give us any additional
information about the out-of-sample z’s. If we had a model with spatially correlated
random effects, then we could adapt the method outlined in Saei and Chambers
(2005) to produce estimates and MSEs. But of course, our model does not have
spatially correlated random effects.

We therefore need to resort to producing synthetic estimates for the out-of-sample
small areas. These are ford=D+1,D+2,....D+R,

where
PR
exdilﬂl
t 2 t A syn
oy , 1+exd1]ﬂ1 +exd12ﬂ2 , pdll
Rai =My . =My on |
exdiZﬂZ pdlz
1+ ex;’ilﬂl + ex;!fzﬂz

~ ~

where the estimates = (f ,Z?g)f are the PQL estimates based on the in-sample data
d=1,2,...,D.

Most of the derivation for an approximation to the MSE matrices for the out-of-sample
small area totals proceeds in a similar way as in the previous section.
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First define

ex;uﬂ1

Xy B X2 *

o | Treraipetaiz o Dy
Hai =My , Mg\ D
exdizﬂz DPain
1 + ex;ilﬂl + ex;ﬂﬂZ
I i
. e r r r *y
and let o, = Z Mg + Z (J’ di ~ Mai T Mg — i )

i=1 i=1

denote the real totals we are trying to estimate.

Now define Sy =D My =1,
i=1

The MSE matrix ofsd ford=D+1,D+2,...,D+R can now be written as
st (8,) = 5((8-84)(8 -84 |+ 5((6-84)(8-0.)')
E((ﬁd—gd)(gd—éd)[)+E((6~d—6d)($d—6~d)tj. ©.1)

We now go about further simplifying the terms in (9.1).

Firstly we note that
! ! )i Lo !
E {ZyZﬁ —Zu&](Zu& N ]
i=1 i=1 i=1 i=1
I I Lo !
=E (E(nyﬁ‘udJ ZﬂmJ[Zﬂdz Zﬂfﬁj =0
i=1 i=1

and therefore

~ ~ I I I I d
E((@l —0y4 )(5d —0y4 )tj =k Zygi - Zﬂgz' (zy:lz‘ - Zﬂ:ﬁ}
i=1 i=1 i=1 i=1

I I I Lo 4
+E| | D= D Moy (Zufzz—z;td?] .92
i=1 i=1 i=1 i=1
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The first term in the above equation is simply (8.4) and to approximate this term we
can use (assuming the variance components are small)

1 Ak
v
D2
i=1

n Syn n , Syn
SR b (ST 1 B o
where X, =my o om on g | 9.3)
~Pan Paiz Pai> (1 ~ Par )

The second term in (9.2) can be approximated by taking a first order Taylor series
expansion. Let 8=X,;f+uyand 8* =X . Then

M ~ W +2:(6-6"),

= Wi+ kg 69

where X7 has the same form as (9.3) but with pgﬁ and p‘;yg replaced respectively with
Dun and py;». Hence,

I I I ro Y . .
; [zu;i —zu;;f](zﬂ;f —zudz] (g
i=1 i=1 i=1 i=1
=M, W,M}, 9.5)

where M:, = 211212;’; .

Ak

Note that (9.5) can be approximated with M :,WA/dM d

where M ; = lelﬁ‘.z
and \I;Jd = [ ipl (/’Anj
P2 P

Now we need to approximate

E((éd ~8,)(84 -84 )’j = MSE(£,).
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Let 9;}1 =Xd,-B and 67, =X 4. By a first order Taylor series expansion we have

B~ o + 347 (00— O ) 9.6)
and hence
1 A
g =Ty =D 2q (Xdz‘ﬂ _Xdz‘ﬂ)- ©.7)
i=1
Now let t,,=K%Band z ), =K2§3, where K, = j:lzZXdi . Now,
MSE (2, )~ MSE(7};)
A EACAEAY
=E((f;, _E B - ) (8~ + —r;,)f)
= B((#1 - =) )+ (-2 -5) ) ©8)
where 7, = K;ﬂ

and to get to the last line we assume as in the previous section that the estimator of

the variance components is translation invariant.

The second term in (9.8) is
Ar ~r Ar ~r \I A P PN w ~\l
E((Td — 7y )(2a %) ):E((Kdﬂ_Kdﬁ)(Kdﬂ_Kdﬂ) )zo,

To see why the above term is approximately the 0 matrix, see the argument just after
(8.10) and note that we do not have an M type component here.

The first term in (9.8) is
A CRAY S (T I
where B = (XfV_lX)_l x'vle

and X and V are as defined in the previous sections and are therefore based on the
in-sample areas only. Again we need to assume that £~ in V does not depend on the
in-sample random effects u to do the following.
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After some simplifications we have
- * * - -1 —
KiB-KyB=K;(X'V'X) X'V (Zu+e),

where Z, u and e are defined using the in-sample areas.

Hence we have

LAY

K:{ (XtV_lX)_l XtV_lE((Zu +e)(Zu +e)t )V_lX(XtV_lX)_l K:;

Il
N
Q, *

(XfV‘lx)_1 x'vlvwlx (XIV_lX)_l K}

* _ -1 %
Ky(x'v7'x) K 9.9)
and we can approximate (9.9) with
. . -1,
Ry(x'v7'x) R}
where K, = 25:1 ST X

and V is just V with the estimates ®, f and & substituted in as in previous sections.

Now we need to consider the terms
5((84-84)(6a-04) )
and £((6a-8,)(6:-4) )

Note that Sd —5d is a function of the in-sample data and is independent of 56; —04
which is a function of the out-of-sample data. Therefore

5((80-80)(6a-0a) |- 2((6:-8.))2((8a-04) )
and £((60-80)(6a-84) |- £((8-00)){ (8 -6.) |
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Now using (9.6) and (9.7) we have

E(8, - ) szz(xdz ( ) Xdlﬂ)=ole

since B is unbiased in a linear mixed model framework.

Also using (9.4)

Hence

and

! .
Z(y:iz - 4”2’1‘ + 4”21‘ - Jud;ﬁ )J

i=1

I
E(Z(J’:ﬁ — Mgy + Mgy — ﬂdzr')

i=1

1
z /u:lz' - /ud; ]

i=1

I
*p
D Sy ]
i=1

=00 -

£((6-8,)(8,-0,) ) =0

E((Sd

—551)(361 —Sd)tj * 02 -

We can now define an MSE estimator for the out-of-sample areas,

d=D+1,D+2,...,

D+Ras

i=1
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10. APPROXIMATE STANDARD ERRORS OF THE ELEMENTS OFB

In Section 8 we derived the approximate MSE matrix of an estimator of the form

KB +Mii, where M and K are given matrices.

If we set K to be the identity matrix and M to be a matrix containing all 0’s then we can
apply (8.20) directly to obtain

MSE(B)~KPK'

()(fx?‘lx)_1 (10.1)

by noting that the component G4(@) is not relevant here. The approximation (10.1)
can be used to check the significance of the covariates in the model. Note that it is
not appropriate to use _]Bl defined in Section 4 for this purpose (since it is not a
function of Wand does not account properly for the influence of the random effects).
Note also that in this framework (of linear mixed models), B is unbiased, and so the

approximate standard errors of the elements of f are the square root of the diagonal
entries in (10.1).
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11. PARAMETRIC BOOTSTRAP MEAN SQUARED ERRORS

The mean squared error estimators in Sections 8 and 9 were derived using various
approximations. In this section we consider an alternative mean squared error
estimation technique based on a parametric bootstrap. This approach is very similar
to the bootstrap method described in Molina et a/. (2007). The main difference here
is that instead of simulating # from a univariate normal distribution, we need to
simulate from a bivariate normal distribution. We also extend this bootstrap
technique to incorporate out-of-sample small areas.

The bootstrap method is outlined as follows:
(@) Model fitting: fit the model to the original data (this will be for in-sample areas

d=1,2,...,D), obtaining parameter estimates 31 and 32 and .

(b) Generation of random effects: Ford=1,2,...,D,D+1,D+2,....D+R (includes
R out-of-sample areas), independently generate )y = (u);,,1);,)" from a bivariate

normal distribution with mean Q and covariance matrix
s o P
W, :( A1 A12 '
P2 P

(¢) Generation of a bootstrap population: ford=1,2,...,D,D+1,D+2,...,D+R,
calculate the probabilities

t B
exdi1ﬂ1+udl

%
Pain = A "
1+ exéiilﬂl Yy ex:ﬁzﬂz"'udz
and
" exiﬁzﬂz ity
Paiz =

t Jat * 1 A *
1+ eleilﬂl+udl + exdizﬂﬁ‘“dz

and generate the following sample and non-sample multinomial vectors

Var = (ydn Vi ) ~ Multinomial (mdz ' Daits Paiz ) :
*r _ *r *V ¢ . . 7 £ &
Var = (ydz'l’ydz'z) ~ MUIUnomlal(mdzwszppdzz)-

Calculate the true area totals

8 = (80022 )t =X (v +vik).
1
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(d) Model fitting to the bootstrap sample and parameter estimation: fit model to the

©

®

46

* ¥

bootstrap sample datay ), ford=1,2,...,D only, obtaining estimates B 1 B 5, 0
and predicted values #1,;. Note that the predicted values of %, for the
out-of-sample areas d=D+1,D+2,...,D+R are always il ;; =0. From these,
calculate individual predicted values ford=1,2,...,D+R:

t PL N t nF  AE
X i +u X i +u
N e dllﬂl dl e dlZﬁZ d2

Yai = mdz

At A I OAF A% ) 1 At A 1 At A
1+ exdz‘lﬂl R + exdfzﬂz Ty, 1+ exdz'1ﬂ1 R + exdizﬂz +Uy

Then calculate bootstrap estimates of totals by

51 =(8ub0a) =X (495
i=1

Bootstrap replicates: repeat steps (b)—(d) B times. Let 52(1b) and 5 D ®) denote the

true values of the parameters and 0 Zgb) and 0 Z(Zb) the estimators that are

obtained in the b-th repetition, b=1,2, ...,B. The bootstrap estimators of the
mean squared error matrices E((Sd —6d)(3d —561)[), ford=1,2,...,D+R are

B((60-3,)(6,-0) |-
B—li(“(b) *(b)) B—li( 3(b) _ (b))( 3;(219)_ 5;(219))

B 2
-1 &*(b) _ *(b)\[ 4*(b) _ *(b) Bl $*(b) _ 57()
B 2(5@/1 ~O4 )(5512 ) Z(5d2 ~ 04 )

Other estimates: after step (e) it is also possible to estimate mean squared errors
of other parameter estimates such as f and @. For example, after implementing
the repetitions b=1,2, ...,B we can also approximate root relative mean squared

errors of each element in Bl and Bz- Let index & denote the k-th element of £

(or B>). Let ,B 1k) denote the value from step (a) and [A'} ;EZ% denote the bootstrap

estimate at iteration b. A bootstrap estimate of the RMSE(f 1(,e)) is

B , 2
AN g _
\/B bzl(ﬂl(k) _ﬂl(/e))

and this can be compared directly with the standard error estimate from
Section 10.
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12. AUXILIARY DATA

The previous sections described the theory behind producing small area estimates of
labour force counts and estimating mean squared errors. We now apply this theory to
real data.

The small areas in our model represent LGAs (Local Government Areas) which have
boundaries defined according to the 2001 ASGC (Australian Standard Geographical
Classification). These are chosen because they provide sufficiently fine geographical
areas, but still have adequate samples in the area for analysis. The total number of
in-sample areas in August 2001 and August 2006 are respectively 424 and 413 and the
total number of out-of-sample small areas in August 2001 and August 2006 are

respectively 220 and 231.

The first step is to fit an appropriate model to the in-sample data and produce PQL
estimates of # and f and approximated REML or ML estimates of ¢. One essential part
of this first step is to choose an appropriate set of explanatory variables to include in
the models. That is, we need to fully define x4 and x4>.

Auxiliary data are available from a variety of different sources. The two main sources
are administrative Centrelink benefit payment data from DEEWR (Department of
Education, Employment and Workplace Relations) and the Australian Census of
Population and Housing. These data are available for the time points August 2001 and
August 2006 and so it will be possible to fit two separate models with the same

explanatory variables for the two different time points as a comparison.

There are quite a large number of potential explanatory variables that could be used in
the models. Ideally some kind of model variables selection process would need to be
undertaken, however we do not consider this approach here. Instead we note that
the ABS has already produced experimental estimates of small area labour force
counts using three separate binomial logit mixed effects models (using the
methodology outlined in Saei and Chambers, 2003). A careful model selection
process was applied in this case to determine an appropriate set of explanatory
variables for the binomial logit mixed models. For consistency and comparative
purposes we will use the same set of explanatory variables that were used in these
earlier models. Therefore each of our vectors x4 and x4, will contain the same set
of 37 variables each. In summary, these variables are benefits payments variables,
state indicators, age/sex indicators, remoteness indicators, socio-economic indexes for

areas, and household type.
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The following list outlines the explanatory variables in more detail.

48

AS1-AS10: ten age/sex indicators. The five age groupings are 15-24 years, 25-34
years, 35—44 years, 45-54 years and 55-64 years. Note that we only consider the
working age population for this analysis. AS1-AS10 are defined in order of
increasing age and all odd AS groups are males. The base category is AS1.

STATE1-STATES: eight state indicators. These refer in order to New South
Wales, Victoria, Queensland, South Australia, Western Australia, Tasmania, the
Northern Territory and the Australian Capital Territory. The base category is
New South Wales.

NSA YAO: Proportion of population in the class registered to receive full
payment of Newstart Allowance (unemployment benefits) or Youth Allowance
(other).

ASPAY1-ASPAY10: ten age/sex indicator by PAY interactions. PAY is the
proportion of the population in the class registered to receive full other benefit
payments. For example, disability support pension, parenting payments, partner
allowance, wife pension, etc.. Note that this set up implies that the effect that
PAY has on the probability is different for each age/sex class.

REMOTE1-REMOTES3: three remoteness indicators. These refer to major city
(REMOTED1), non-remote area (REMOTE2) and remote area (REMOTE3) as per
the ASGC (Australian Standard Geographical Classification) 2001 (see ABS (2001)
for further details). The base category is REMOTEL.

SEIFA1-SEIFA4: four socio-economic index of advantage-disadvantage
indicators. SEIFA1 indicates advantaged areas (whether the area is in the top
25% of SEIFA scores), SEIFA2 indicates the next 25%, SEIFA3 the next 25% and
SEIFA4 indicates the most disadvantaged areas (whether the area is in the
bottom 25% of SEIFA scores). The base category is SEIFA1. For further details
see ABS (2003).

HH1: Proportion of Census population in class that lives in dwelling consisting of
married couple only or married couple with at least one child aged 15 or over.

HH2: Proportion of Census population in class that lives in dwelling consisting of
married couple with children all aged 0 to 14 years.

HH3: Proportion of Census population in class that lives in dwelling consisting of
one person only or one person with at least one child aged 15 or over.

HH4: Proportion of Census population in class that lives in dwelling consisting of
one person with children all aged 0 to 14 years.
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Before we fit the multinomial logit mixed models, we undertake a brief exploratory
data analysis using the August 2006 LFS and Census data to examine the suitability of
our above chosen explanatory variables. Figure 12.1 contains average proportions of
employed and unemployed within the ten AS groups, the eight STATE groups, the
three REMOTE groups and the four SEIFA groups. The labour force proportions
(especially employment) depend strongly on age and sex since the mean proportions
vary across these categories. The AS indicators should certainly be considered as
explanatory variables. Figure 12.1 also shows that the relationships between the
labour force average proportions and each of STATE, SEIFA and REMOTE are in
general not as strong as age/sex but there is still some variation.

12.1 Plot of average labour force proportions within certain groups for 2006
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The variables we have examined so far are the categorical variables. We now examine
relationships between log(y1/v4i3) for the cases y 3 >0 and y41 > 0 and the
continuous explanatory variables for 2006. Note that we do not do this for y 4, since
there are a large number of zeros in this case.

Figure 12.2 contains plots of log(y1/v4i3) versus each of HH1, HH2, HH3 and HH4.
From these it appears there might be a weak association, especially for HH1 and HH3.
A similar plot for the variable NSA YAO is given in figure 12.3, although we note that
the linear relationship in this case does not look very strong. However, note that
irrespective of this observation, a relationship may still exist between log(y z2/Vui3)
and NSA YAO and this is the reason why this variable is still included.
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12.2 Plot of log(ydi1/yai3) versus each of HH1, HH2, HH3 and HH4 for 2006
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12.4 Plot of log(ydi1/ydi3) versus PAY within AS groups for 2006
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Figure 12.4 contains a plot of log(y1/y4i3) versus PAY within AS groups. There
appears to be a negative relationship between log(y 41/v43) and PAY. However, note
that the slopes appear to differ between AS groups. This is the reason why we include
the PAY variable in the model as an interaction between each of the AS indicators.
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13. ESTIMATES OF MODEL PARAMETERS

Tables 13.1 and 13.2 contain the PQL estimates of f1 and f; for the years 2006 and
2001. Estimates of the standard errors of the parameter estimates and p-values are
also given in these tables. The p-values are calculated assuming that the distribution
of the parameter estimate is approximately normal. Estimates which are significant at
the 0.05 level are marked with a *. Not all parameter estimates appear to be
significant, but as we stated in the previous section, all variables are still included for
consistency with the previously fitted binomial logit mixed models. As expected, for
employment (and this holds for both years), the AS group indicators and ASPAY
variables are highly significant. For both years, the variable NSA YAO is highly
significant for unemployment. This is what we would expect as NSA YAO is related to
unemployment.

The standard errors in tables 13.1 and 13.2 use the analytical approximation (10.1)
which has many assumptions behind it. As a comparison, we also calculate parametric
bootstrap RMSEs using the algorithm described in Section 11 (in particular see step
(f)). We implement the parametric bootstrap using the 2006 data, with the simulation
size set to B = 1000 and use the combined PQL-REML algorithm for parameter
estimation. A comparison between the 74 estimated analytical standard errors and the
parametric bootstrap estimated root mean squared errors is given in figure 13.3
(figure 13.4 contains the smaller standard errors in the range 0-0.5 only). From these
plots we can see that the differences between the estimated SEs and RMSEs are very
small. Also in all cases we find that the bias component of the bootstrap RMSEs is
small (<1.5%). Therefore the analytical SE estimates of 3 appear to be good
approximations.

The PQL parameter estimates in tables 13.1 and 13.2 use the approximated REML
method to estimate the variance components ¢. As an alternative to this we could
also have used the approximated ML method. Table 13.5 contains estimates of the
variance components for both August 2001 and August 20006, using the two different
estimation methods. To estimate the RRMSEs of the approximated ML and REML
estimators, the parametric bootstrap of Section 11 (with B =1000) can be used with
some slight modifications that we now briefly discuss:

. In step (a) of the algorithm, compute the PQL-REML estimates. These will be
conditioned on in the rest of the simulation

. In step (d) we need to compute both the REML and ML estimates of the variance
components.

. At the conclusion of the simulation we have 1000 REML and 1000 ML estimates
of ¢. These can then be used to calculate estimates of bias and RMSEs.
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13.1 PQL Estimates of 1 and 8, for 2006 (REML used for variance components)

.............................................................................................................

Intercept

STATE2
STATE3
STATE4
STATES
STATEG
STATE7
STATES

AS2
AS3
AS4
AS5
AS6
AS7
AS8
AS9
AS10

REMOTE2
REMOTE3

SEIFA2
SEIFA3
SEIFA4

ASPAY1
ASPAY2
ASPAY3
ASPAY4
ASPAY5
ASPAY6
ASPAYT7
ASPAY8
ASPAY9
ASPAY10

NSA_YAO

HH1
HH2
HH3
HH4

-0.647 0.132 -4.91 < 0.0001
0.101 0.078 1.30 0.1940
0.215 0.055 3.92 < 0.0001

-0.145 0.059 -2.48 0.0131

-0.157 0.073 -2.14  0.0324

-0.098 0.082 -1.19 0.2340

-5.430 1.210 -4.50 < 0.0001

-4.060 0.843 -4.81 < 0.0001

17.100 2.720 -6.30 < 0.0001

-4.510 0.739 -6.10 < 0.0001

16.300 1.740 -9.39 < 0.0001

-4.790 0.735 -6.52 < 0.0001

10.500 1.330 -7.94 < 0.0001

-5.410 0.844 -6.41 < 0.0001

-6.390 0.638 -10.00 < 0.0001

-4.720 0.566 -8.34 < 0.0001

0.637 0.219 291 0.0036
-0.244 0.292 -0.84 0.4030
1.510 0.362 4.18 < 0.0001
1.090 0.924 1.18 0.2380

Employed
Estimate SE Z  p-value
0.428 0.192 2.23 0.0257
0.092 0.059 1.55 0.1210
0.175 0.062 2.81 0.0050
0.096 0.069 1.39 0.1650
0.096 0.065 1.47  0.1420
0.002 0.091 0.02 0.9870
-0.137 0.158 -0.87 0.3870
0.444 0.131 3.39 0.0007

*

0.0001

0.8690
0.5740
0.4090
0.1560
0.9260
0.0081
0.4350

0.5660
0.0009
0.0085
0.0015
0.3210
0.8720
0.0001
0.0045
0.0001

0.8090
0.4790

0.6630
0.6430
0.4500

0.0375
0.2110
0.0058
0.6890
0.0001
0.1360
0.4220
0.8840
0.0340
0.9880

0.0001

0.2670
0.3250
0.2630
0.0688

.............................................................................................................
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13.2 PQL Estimates of 1 and 8, for 2001 (REML used for variance components)

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Employed Unemployed
Variable Estimate SE Z  p-value Estimate SE Z  p-value
Intercept 0.779 0.204 3.82 0.0001 * -2.610 0.370 -7.05 < 0.0001 *
STATE2 0.024 0.045 0.53  0.5980 0.122 0.084 1.45 0.1470
STATE3 0.131 0.048 2.74 0.0061 * 0.330 0.086 3.83 0.0001 *
STATE4 0.045 0.056 0.81 0.4170 0.119 0.104 1.15 0.2500
STATES 0.039 0.052 0.75  0.4520 0.146 0.095 1.53 0.1260
STATEG -0.018 0.071 -0.25 0.8020 0.220 0.124 1.77  0.0767
STATE7 0.075 0.124 0.61 0.5450 0.135 0.219 0.62 0.5370
STATES 0.145 0.096 1.51 0.1310 0.101 0.177 0.57 0.5670
AS2 -0.089 0.151 -0.59  0.5540 -0.148 0.267 -0.55 0.5800
AS3 1.960 0.182 10.80 < 0.0001 * 1.650 0.287 5.77 < 0.0001 *
AS4 0.781 0.147 5.31 < 0.0001 * 0.200 0.282 0.71  0.4770
AS5 2.460 0.200 12.30 < 0.0001 * 1.800 0.344 5.24 < 0.0001 *
AS6 0.715 0.180 3.98 < 0.0001 * -0.133 0.358 -0.37 0.7110
AS7 1.720 0.151 11.40 < 0.0001 * 0.966 0.265 3.64 0.0003 *
AS8 0.415 0.135 3.08 0.0021 * -0.767 0.296 -2.59 0.0096 *
AS9 0.080 0.143 0.56 0.5770 -0.795 0.315 -2.52  0.0117 *
AS10 -0.766 0.151 -5.09 < 0.0001 * -2.680 0.506 -5.30 < 0.0001 *
REMOTE2 0.036 0.058 0.62 0.5330 0.017 0.101 0.17  0.8690
REMOTE3 0.138 0.042 3.27 0.0011 * 0.077 0.075 1.02  0.3080
SEIFA2 -0.053 0.046 -1.15  0.2500 0.039 0.083 0.48 0.6350
SEIFA3 -0.069 0.060 -1.16  0.2460 -0.083 0.108 -0.77  0.4400
SEIFA4 -0.084 0.068 -1.24  0.2150 -0.141 0.122 -1.15  0.2500
ASPAY1 -3.830 1.010 -3.79 0.0002 * 0.201 1.650 0.12  0.9030
ASPAY2 -2.370 0.746 -3.18 0.0015 * 0.658 1.340 0.49 0.6230
ASPAY3 -9.230 2.630 -3.51 0.0004 * -7.110 3.780 -1.88 0.0601
ASPAY4 -4.730 0.819 -5.78 < 0.0001 * -1.030 1.680 -0.61 0.5410
ASPAY5 -13.800 1.770 -7.78 < 0.0001 * -9.390 2.850 -3.29 0.0010 *
ASPAY6 -4.400 0.746 -5.90 < 0.0001 * -0.604 1.680 -0.36 0.7200
ASPAYT7 -11.200 1.300 -8.62 < 0.0001 * -8.210 2.380 -3.45 0.0006 *
ASPAY8 -5.590 0.665 -8.41 < 0.0001 * -1.780 1.760 -1.01  0.3120
ASPAY9 -4.460 0.507 -8.81 < 0.0001 * -1.430 1.260 -1.14  0.2540
ASPAY10 -6.020 0.614 -9.82 < 0.0001 * 0.843 2.370 0.36  0.7230
NSA_YAO -0.697 0.897 -0.78  0.4370 7.510 1.450 5.16 < 0.0001 *
HH1 0.164 0.217 0.75 0.4510 0.741 0.394 1.88 0.0601
HH2 -0.819 0.303 -2.70  0.0069 * -0.911 0.557 -1.63 0.1030
HH3 1.580 0.457 3.45 0.0006 * 2.580 0.938 2.75 0.0060 *
HH4 0.271 1.310 0.21  0.8360 3.610 2.660 1.36 0.1740

.............................................................................................................
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13.3 Plot of analytical SEs versus bootstrap RMSEs of B for 2006
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13.4 Plot of the small analytical SEs versus bootstrap RMSEs of 3 for 2006
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13.5 Estimates of ¢

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

2001 2006
Parameter ML REML ML REML
01 0.0238 0.0280 0.0683 0.0758
%) 0.0468 0.0595 0.0691 0.0853
?12 0.0105 0.0125 0.0424 0.0466
P 0.316 0.307 0.617 0.580

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Table 13.6 contains the bootstrap results for ¢ for August 2006. In terms of bias, the
REML estimator is performing reasonably well since all relative bias estimates are <2%
in absolute value. From these results it is clear that the REML estimator is to be
preferred over the ML estimator since not only are the estimated biases smaller (as
one might expect), but the RRMSE estimates are also smaller for the REML estimator.

13.6 Comparison of the REML and ML estimators of ¢ for 2006

................................................................................................

Relative bias (%) RRMSE (%)
Original ----------------------------------------------------------------------------------
Parameter estimate ML REML ML REML
01 0.0758 -9.15 -1.56 15.56 13.22
©2 0.0853 -19.54 -1.85 31.87 27.08
P 0.580 6.71 0.80 22.68 20.15

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

It is also of interest to test the significance of the variance components ¢ (since if
these are not significantly different from zero, then there is no point using a mixed
effects model). In Molina et al. (2007), the authors test the significance of their single
variance component using a likelihood ratio test (which is based on the approximate
marginal likelihood). In theory we could apply a similar test here, but unfortunately
the distribution of the likelihood ratio test statistic in our case will not be easy to
derive under the null hypothesis. This is because under the null hypothesis

@ =(p1,92,¢12)" =0 and ¢ is on the boundary of the parameter space which is a non
standard condition. Molina et al. (2007) were able to apply this test because in the
case of one variance component, the null distribution is known to be a mixture of two
%? distributions.
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13.7 Histograms of {;, (, and p for 2006 and 2001
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In any case, as an alternative, the previous parametric bootstrap used to produce table
13.6 will give some insight into the significance of the variance components. Using
the 1000 REML estimates of each parameter, we build up empirical distributions under
the fitted model of the REML estimators. Histograms of the 1000 sets of REML
variance component estimates are given in figure 13.7. From these we can calculate
approximate 95% parametric bootstrap confidence intervals using the percentile
method. These confidence intervals are given in table 13.8. Notice that the
confidence intervals for ¢ and @, for both years are not close to zero and the
distributions look roughly symmetric, giving some evidence that the variance
components are significant and a random effects model is appropriate in both years.

13.8 Approximate 95% confidence intervals for (?)1, @2 and p for 2006 and 2001

................................................................................

2006 2001
Parameter Lower Upper Lower Upper
¢100556 ........ 00948 ........... 00169 ......... 0 0395
02 0.0439 0.1280 0.0272 0.0937
p 0.371 0.788 -0.048 0.581

................................................................................
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If we were to apply the model in Molina et al. (2007) to our LFS data, we would be
imposing that ¢ = (p1,¢1,¢1)". Tables 13.5 and 13.8 give some evidence that this more
restrictive model may not be appropriate especially for the 2001 data. To test the null
hypothesis of ¢ = (¢1,¢1,¢1)" for the 2006 data, a parametric bootstrap is used to
generate empirical distributions under the null. The algorithm in Section 11 is used
for this purpose, but note that we need to make one small change. Since we need to
simulate under the null, in step (c) we replace all instances of u, with 1, to ensure
there is only one variance component. A histogram of the empirical distribution of p
under the null hypothesis is given in figure 13.9 for the 2006 data. There is strong
evidence to suggest that p =1 does not hold since the observed p is 0.580 and is
nowhere near any of the simulated p values under the null. Therefore our category
specific random effects model appears to be more appropriate for our data than the
more restrictive model used in Molina et al. (2007).

13.9 Histogram of p under the null for 2006
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14. RESIDUAL PLOTS AND GOODNESS OF FIT TESTS

In the case of the multinomial logit model with no random effects or variance
components, it is usual to assess model fit by computing various different summary
statistics, measuring differences between the observed and fitted values. For example,
as stated in Dobson (2001), one could use the Pearson y? statistic, Deviance or the
Likelihood ratio chi-squared statistic.

Suppose we have no random effects or variance components ¢ (the model is a GLM
(generalised linear model)), then the standard Pearson y? goodness of fit statistic is

i;%(ydlf dl/) ,

Egy

where E4; is the estimated expected value of y ;. The Pearson %% goodness of fit test
is used to determine whether or not the model appears to hold. Given that the model
holds and under appropriate asymptotic conditions (expected counts Eg; are large),
the Pearson y? statistic will follow an approximate )(%(N_p) distribution, where

N=3X8 1,=7,820is the total number of multinomial observations for the August
2006 data (similarly we could also compute this for August 2001) and p =37 is the
number of parameters in 1 (or 7). A large or small value of )(12, indicates that overall
the model does not appear to hold (the null hypothesis is that the model holds).

Unfortunately we cannot apply the above test to our data since our model is not a
GLM. The application of goodness of fit tests in a GLMM (generalised linear mixed
model) situation is not straight forward theoretically. For instance, the observations
are no longer independent and the Pearson statistic and other statistics are not
guaranteed to have a y? distribution under the null hypothesis even when the
expected counts are large. Also, another problem is that the estimates E; are not
easy to calculate as they involve integrals with no closed form solution.

There are two approaches that we consider to get around the above issues. The first
is to use as Ey;, the conditional expectation estimates 772, p dif predicted from the
model and the second is to use an estimate of £(y 4;) from a Taylor series expansion
about u#, =0, since in our case the variance components are small. The distribution of
these y? statistics can then be estimated by applying the parametric bootstrap of
Section 11 using B = 1000.

For our multinomial logit mixed model sample data we have

E(ydz'j) = E(E(ydz'j |24 )) = mdiE(pdij) (14.1)
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and
Var(ydij ) = E(Var(ydz'j |2y )) + Var(E(de-j |4 ))

- mdl.E(pdl.].)(l—E(pd,.j ))+mdl~ (ma =1)Var(pay)- (14.2)

It can be shown using Taylor series expansions that when the variance components

are small,
P\ Pait (1 ~2Dn )(1 ~ Pan )
E(pun) = Pan +3| +02( Pibabiin = Pl P (1= P ) | (143)
+201, (217:1?1]?;:'2 — DanPaiz )
» (pZ?lp;z'Z - pjiz‘Zp:iz'l (1 - pZ’z'l ))
E(baiz) ~ Paiz +% +0, Dotz (1 ~2Din )(1 ~ Dai ) (14.4)
+2¢1; (ZPZZPZA - p;z'lpjiz‘Z )
2 (pZ?lpZz-a - p:lz'?)p:lz'l (1 ~ Pan ))
and E(pdz'S) ~ p;z'S +% +@; (P;zfzp;:% - pZ’z’SPZ’z‘Z (1 - pZ’z‘Z )) ) (14'5)

ES * ES
+4015 Pan PaizPars

where pJ;1, pyin and pj5 are respectively p i1, paiz and pgz with w4 replaced with the
zero vector (the Taylor series expansions were taken about the point 2z, =0). Also,
we can show that

var(pan) = 91 Pai (1 — DPan ) + Q2D Pz ~ 2012 P (1 ~ Dan )sz'z, (14.6)
%) %) #) x \2 %) * 4
Var (pdz'Z ) R P PaiPaiz T P2Lar2 (1 — DPai ) =201, D42 Pan (1 — DPan ) (14.7)

%) %) x) %D % * %)
and Var (pa ) = ¢1Pdn Pais + P2Pai2 Pais + 2012 D Paiz P (14.8)
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We are now at a point where we can approximate Eg; in the )(2 statistic using
estimates of E() 4;) based on the Taylor series approximations (14.3)—(14.5) and
noting the relationship (14.1). Note that within these approximations, the parameters
P and ¢ are replaced by their estimates. Call this the unconditional approximation
method. The other method as we mentioned earlier is to use the estimates of the
conditional expectation E(yd,-j | ud) for E; in the %2 statistic. Call this method the
conditional method.

14.1 Histogram of the )(2 statistic using the conditional method for 2006
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Using the parametric bootstrap of Section 11, we generate empirical distributions of
the two y? statistics under the fitted model based on a simulation of size B = 1000.
The two distributions are summarised in figures 14.1 and 14.2 for the August 2006
data. An approximate 95% confidence interval for the conditional method is (7035,
7708) and an approximate 95% confidence interval for the unconditional
approximation method is (8045, 8775). The values of the y? statistic for the sample
data are 7669 (conditional method) and 8703 (unconditional approximation method).
Clearly these values are within the appropriate approximate confidence intervals,
suggesting that overall both the models for y4; and y 4; |4, are adequate for the
August 2006 sample data (similar conclusions can also be drawn for the August 2001
data, but details are not given here).
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14.2 Histogram of the )(2 statistic using the unconditional approximation method for 2006
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One issue associated with goodness of fit tests is that they only produce one overall
summary measure. It is of interest to also examine individual deviations and look for
outliers/influential points. Residual plots are useful for this purpose. For each labour
force status j = 1,2, 3, define the following conditional standardised residuals for the
in-sample data (Molina et al. (2007) call these Pearson residuals)

c Vg —MgiPay
lej _— N N .
\/ Mg; Dayy (1 = Pajj )

We can also calculate approximate unconditional standardised residuals as follows

uc _ ydl‘f _E(ydl.f)
agj — T /=,

Var(yd,-j)

where E ( ydij) and \70\7'( ydz-j) are estimates based on the earlier Taylor series
approximations (14.3)—(14.8) and the relationships (14.1) and (14.2) with parameters

[ and ¢ replaced with estimates.
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Interestingly, we can also calculate the following summary statistics for each labour

force categoryj=1,2,3

. 2
$7=2 2(751'1)
d=1i=1
D 1 )
and sy =i
d=1i=1

and compare these with appropriate empirical distributions generated from a
parametric bootstrap under the fitted model with B = 1000 (again we use the
bootstrap approach in Section 11). The empirical distributions are given in figure
14.3. Table 14.4 contains the §¢ and §%¢ values for the August 2006 sample data as well
as approximate 95% parametric bootstrap confidence intervals using the percentile
method. None of the §¢ or §¢ values are within their corresponding confidence
intervals. These statistics indicate that there may be underdispersion present for the
Unemployed counts and overdispersion for both the Employed and NILF counts.
Previously when we calculated the overall y? statistics we did not obtain significant
values. This is because the over and underdispersion in a way averaged themselves

out overall.

14.3 Histogram of the S¢ and S¥¢ statistics for 2006 from a paramettic bootstrap
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14.4 S¢ and S“¢ values and associated parametric bootstrap 95% confidence intervals

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Conditional Unconditional
LFS status S¢ Lower Upper Suc Lower Upper
Employed 4,224 3,522 3,848 4,306 3,741 4,030
Unemployed 3,393 3,407 4,000 3,565 3,578 4,137
Not in labour force 4,253 3,503 3,842 4,407 3,736 4,043

.............................................................................................................

We now examine some residual plots to look more closely at this potential under and
overdispersion issue. Figure 14.5 contains the standardised residuals 75, versus the
order of increasing predicted values my;p 4, for the 2006 employed sample data. The
panel labelled original contains the original sample and the other three panels contain
values calculated from three parametric bootstrap samples. Similarly, figure 14.6
contains the unconditional standardised residuals 7%, versus the order of increasing
predicted values E(ydﬂ). Similar plots for NILF and unemployed are given in figures
14.7-14.10.

When comparing the bootstrap generated employed and NILF samples with the
original data, it appears that the original data contain a small number of larger
absolute residual values for both Employed and NILF. We actually recalculated the §¢
and S%¢ statistics by setting these few larger absolute residuals to zero for employed
and NILF, but the resulting $¢ and S$%¢ statistics were still significantly large. Hence
these couple of larger absolute residuals are not solely responsible for the apparent
overdispersion. In any case, when ignoring the small number of larger absolute
residuals, the sample and original data distributions look roughly similar and hence we
argue that the apparent under and overdispersion is not large enough for us to be
overly concerned. In the significance tests we are clearly only picking up small
significant differences and we suspect this is because our sample sizes are large.

We mentioned above that there were a small number of larger residuals in absolute
value than one might expect when compared to the bootstrap samples. Most of these
do not appear to be overly large and the NILF and employed ones mostly correspond
to the same units. Upon further investigation, the only thing these outliering units
have in common is that they are mostly all from remote areas (REMOTE3=1).
Therefore the model may not be doing as well in the remote areas. Note that there is
not much we can do about this issue because the sample sizes are small in the remote
areas and we do not have any further covariates available.
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14.5 Plots of the conditional employed standardised residuals versus order of predicted values
for original 2006 data and for three parametric bootstrap simulations
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14.6 Plots of the unconditional employed standardised residuals versus predicted
values for original 2006 data and for three parametric bootstrap simulations
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14.7 Plots of the conditional NILF standardised residuals versus order of predicted
values for original 2006 data and for three parametric bootstrap simulations
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14.8 Plots of the unconditional NILF standardised residuals versus predicted values
for original 2006 data and for three parametric bootstrap simulations
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14.9 Plots of the conditional unemployed standardised residuals versus order of predicted values
for original 2006 data and for three parametric bootstrap simulations
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14.10 Plots of the unconditional unemployed standardised residuals versus predicted
values for original 2006 data and for three parametric bootstrap simulations
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14.11 Q-Q plots of 71, for the original 2006 sample and three bootstrap samples
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14.12 Q-Q plots of iz, for the original 2006 sample and three bootstrap samples
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So far we have said nothing about the predicted random effects #. Figure 14.11
contains a plot of the quantiles of standardised 7z, values versus theoretical standard
normal quantiles. This is done for the original 2006 sample and three samples
generated using the parametric bootstrap. Similarly, figure 14.12 contains a plot of the
quantiles of standardised 7 4, values versus theoretical standard normal quantiles.
Figure 14.13 contains a plot of i1, versus #i4,. From these figures it appears that the
original 2006 sample iz values behave similar to those obtained from ‘typical’
samples. The estimated #4 values from the original sample therefore do not appear
to give any indication of model departure.

14.13 Plots of i1, versus i1, for the original 2006 sample and three bootstrap samples
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15. SMALL AREA ESTIMATES AND MSE ESTIMATES

Similar to figure 8 in Molina et al. (2007), figure 15.1 contains plots of the ratios of
direct RSE estimates to model analytical RRMSE estimates versus sample sizes for
2000. The line y =1 is also plotted. A ratio greater than 1 indicates we get gains by
using the model based approach, whereas a ratio less than 1 indicates we get gains by
using the direct survey estimation approach. Since all ratios are greater than 1 we are
always getting gains by using the model based approach. The gains are quite large
when the sample sizes are small and are small when the sample sizes are larger.
Therefore when the sample size is small, the model based estimates have much small
estimated MSEs than the direct survey estimates. Hence we have successfully reduced
the MSEs by using a model based approach.

15.1 Plots of the ratios of direct RSE estimates to model
analytical RRMSE estimates versus sample sizes for 2006
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Figure 15.2 contains a comparison between the model based estimates (8.2) and the
direct survey estimates for the August 2006 in-sample small areas. Note that the
estimates of the NILF small area totals are obtained via subtraction. These plots are
useful as a check for bias. For confidentiality reasons we have removed the actual

numbers on the plots. The three plots on the left contain all of the estimates, whereas

the plots on the right contain only the estimates closer to zero. The line y =x is also

drawn on these plots. Note that the direct survey estimates should be approximately

design unbiased but with large standard errors. Figure 15.2 suggests that the model
based estimates for Employed and NILF are roughly unbiased since although there is
some variation, the estimates are distributed roughly about the line y =x. The

unemployment model based estimates appear to be a little worse in some cases. For

instance, when the direct estimates are large, the model based estimate tends to be
smaller. However, for the most part, the model based estimators appear roughly

unbiased or have a small bias.

Model Estimate

Model Estimate

Model Estimate

15.2 Comparison between model based small area estimates
and direct survey estimates for 2006
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We now consider mean squared error estimation for the estimated small area totals.
The mean squared error matrices can be estimated using two methods, either by an
analytical approximation or a parametric bootstrap. For further details on the
analytical approximation and the parametric bootstrap see Sections 8, 9 and 11. A
comparison of the average percentage RRMSEs for 2006 derived from the analytical
approximation and the parametric bootstrap with B = 1000 is given in table 15.3. On
average the differences between the two methods are very small. The largest average
absolute difference is for unemployment and this is only 0.83% and 0.62% for
respectively the in-sample and out-of-sample small areas.

15.3 2006 Average RRMSE (%) estimates

.........................................................................................

In-sample areas Out-of-sample areas
LFS status Bootstrap Analytical Bootstrap Analytical
Employed 4.84 4.86 7.44 7.47
Unemployed 24.52 23.69 32.30 31.68
Not in labour force 13.34 13.26 19.66 19.72

.........................................................................................

Figure 15.4 contains an overall comparison between the analytical and parametric
bootstrap RRMSEs for August 2006. The line y =x is also plotted. Figure 15.4 also
confirms that on average the RRMSEs from both methods compare well since the
values are roughly distributed about the line y =x. The in-sample unemployment
analytical RRMSE estimates appear a little worse than the others on average since the
analytical approximation looks to be on average slightly overestimating the smaller
RRMSEs and underestimating the larger RRMSEs.

Table 15.5 contains the 2.5th and 97.5th percentiles of the distribution of the
differences between the 2006 parametric bootstrap and the analytical RRMSE
percentages. Figure 15.4 and table 15.5 shows that there is some variability in the
differences between the parametric bootstrap and analytical RRMSEs. However, this
variability is not overly large with the worse case being for the in-sample unemployed
and the majority of these differences are < 4% in absolute value. Note also that some
of these larger differences could also be due to extra variation resulting from the
parametric bootstrap since B = 1000 is only a moderately large value.
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15.4 Comparison between analytical and bootstrap RRMSEs
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15.5 2.5th and 97.5th percentiles of the distribution of the differences between
the 2006 parametric bootstrap and analytical RRMSE percentages
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16. CONCLUSION

This paper successfully adapted the model and estimators described in Molina et al.
(2007) to include category specific random effects. We showed that the category
specific multinomial logit mixed model is more appropriate for our dataset than the
more restrictive one given by Molina et al. (2007). The PQL-REML estimation
procedure worked very well in our context and we showed via a parametric bootstrap
that the PQL-REML estimators had good statistical properties. For instance, the bias in
the REML variance component estimates was found to be small.

Similar to Molina et al. (2007), we described and derived two different estimators of
the mean squared errors of the small area estimated totals. These two different
approaches are based on using an analytical approximation and a parametric
bootstrap. In the paper by Molina et al. (2007), the authors undertook a simulation
study and concluded that the bootstrap estimator performed better than the analytical
approximation and recommended the bootstrap be used. However they noted that
the differences were smaller for the actual UK unemployment data. We showed that
for the Australian labour force data that the analytical approximation RRMSEs
compared very well with the parametric bootstrap RRMSEs and the differences were
all reasonably small. In our context we recommend that the analytical RRMSEs be
used because our parametric bootstrap is much more computationally intensive than
the one given in Molina et al. (2007). We believe the small gains in accuracy will not
be worth the extra computational effort involved for the parametric bootstrap in our
case.

In this paper we used residual plots and y? goodness of fit tests to check model
assumptions. We used a parametric bootstrap to generate the empirical distributions
of the y? statistic. These tests and plots indicated that the model assumptions
appeared to hold approximately for the sample data. There was very slight under and
overdispersion present and a couple of small outliers for remote areas. In a future
study we might try to improve the model for remote areas. In any case, for the most
part the multinomial logit mixed model appears to work reasonably well for modelling
the Australian Labour Force count data. Interestingly, the multinomial model has
quite a restrictive variance and correlation structure and the fact that the multinomial
model works so well here is very convenient. This is because extending the model to
account for under and overdispersion in a small area context would not be straight
forward. This would certainly be an interesting topic for future research.

Another future research topic could be to try account better for the sample design and
any design informativeness. Our estimators like those in the Molina et al. (2007)
paper essentially assume that the Labour Force sample has been collected using
SRSWOR.
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APPENDIX

This appendix contains the proof of E (Gl (@)) ~G,(p)—G5 (@) (see Section 8).

First we take a second order Taylor series expansion (and assume that X in 7" does not
depend on 9)

. . orT oT .
T=T(¢)~T (@) +— (P, —p)+— (9, — @
(6)=T(p)+5 (=) (520
or . 16°T 2 10T ,. 2
+ p— P — P — J—
Sor (P — 1)+ T 1(% P) + 2002 (0, -9,)
10%T ,. I X
+= —@p) + o -0 ) (0~
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+ o= ) (P2 —012) + P =02 ) (P12 —012) -
8(/)18(/)12( 1 1)( 12 (012) 6¢26¢12( p) 2)( 12 (012)

Assuming that T is approximately constant and does not depend on u (technically T
depends on u) and E(§) ~ ¢, then

BT (8) = T(0)+ 2L 6((6 -0 )+ 222 (6202

28% 26¢22
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+= E( % )+ E((or—o )2 — o
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After some algebra and making use of (8.106), (8.18) and (8.19) it can be proved that
fora=1,2,12and b=1,2,12,

2
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Now, assuming that My ~ M (i.e. M, is approximately constant), then

M E(T )My M E(T) MY,

E(G(9)) ~ MyE(T )M} = (A3)

M E(T) MYy M B (T )My,

Now substitute (A.1) into (A.3) and using (8.12) and (A.2) we obtain

1,1 12 1,1 1,2 1,1 1,2
N U (T
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E(G,(9))~G,(p)- - -l ’
12 2.2 12 22 12 2.2
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where fora=1,2,12,b=1,2,12,j=1,2and k=1,2,
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and therefore
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FOR MORE INFORMATION . . .

www.abs.gov.au the ABS website is the best place for
data from our publications and information about the ABS.

INTERNET

INFORMATION AND REFERRAL SERVICE

Our consultants can help you access the full range of
information published by the ABS that is available free of
charge from our website. Information tailored to your
needs can also be requested as a 'user pays' service.
Specialists are on hand to help you with analytical or
methodological advice.

PHONE 1300 135 070

EMAIL client.services@abs.gov.au

FAX 1300 135 211

POST Client Services, ABS, GPO Box 796, Sydney NSW 2001

FREE ACCESS TO STATISTICS

All statistics on the ABS website can be downloaded free
of charge.

WEB ADDRESS  www.abs.gov.au
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