
Weighting and Standard Error Estimation for ABS Household
Surveys
Paper prepared for ABS Methodology Advisory Committee, July 2000

Philip Bell
Australian Bureau of Statistics,  e-mail: philip.bell@abs.gov.au

30Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27Appendix:  Algorithms implemented in GREGWT macro . . . . . . . . . . . . .
258  Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
237.3 Various other findings from complex surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
227.2 Some results for the National Nutrition Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . .
227.1 Modelling variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
227  Evaluations for complex survey weighting situations . . . . . . . . . . . . . .
206.3 Standard errors for more complex estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
176.2 Comparison of variance estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
176.1 Characteristics of the Labour Force Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
176  Example: Labour Force Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
155.2 Results of simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
155.1 Simulating a population of clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
155  A simple simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
144.9 The zoned jackknife . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
134.8 Properties of the group jackknife approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
124.7 Group jackknife for functions of estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
114.6 Group jackknife for generalised regression estimators . . . . . . . . . . . . . . . . . . . . . .
114.5 Group jackknife for more complex estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
114.4 Group jackknife variance estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
104.3 Justifying the group jackknife for systematic selection . . . . . . . . . . . . . . . . . . . . . .
104.2 Forming replicate groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
104.1 Household survey sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
104  Group jackknife variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
93.5 Other widely-used variance estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83.4 An approximate split-halves variance estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63.3 Problems with using the weighted residuals method . . . . . . . . . . . . . . . . . . . . . . . .
63.2 The weighted residual variance estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63.1 Why variance estimation is a difficult problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63  Variance estimation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52.8 Restricting the weights or changing distance function . . . . . . . . . . . . . . . . . . . . . . . .
52.7 Generalised regression as a constrained minimisation . . . . . . . . . . . . . . . . . . . . . . .
42.6 Examples of generalised regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32.5 Generalised regression estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32.4 Multi-step weighting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32.3 Post-stratified ratio estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2 Linear weighting and selection weighted estimates . . . . . . . . . . . . . . . . . . . . . . . . . .
22.1 The household survey sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22  Weighting for household surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 



1  Introduction
The Australian Bureau of Statistics (ABS) conducts a variety of household surveys to collect data
about households or the persons in them.  These surveys typically use a multistage sample
design that first selects a set of geographic areas and then a sample of dwellings to be
approached by interviewers.  Such a design gives little control over the types of households and
persons that are selected — so it is important to use estimation techniques that make some
correction for any imbalance in the sample.  This combination of a multistage design with a
possibly complex estimation technique makes variance estimation a nontrivial problem.

Within the ABS, household survey estimation has been undergoing a period of transition.  In the
1980s a technique known as post-stratified ratio estimation was typically used.  For these
estimates a valid variance estimator was available, known in the ABS as split-halves.  Standard
practice was to use split-halves estimates of standard error as the basis of the standard error
models published with ABS data.

Over time the drive to do more with each survey has increased the complexity of sample design
and required extensions to estimation.  Now weighting may include a separate non-response
adjustment phase, and may use a variety of auxiliary data — for example, population counts for
households as well as persons.  The enabling technology for some of these extensions was the
CALMAR macro of Deville, Särndal and Sautory (1993), which allows weighting using the
generalised regression method and related calibration methods..

In the ABS these changes to estimation methods moved faster than the ability to estimate
variances.  Up until 1997 split-halves was the only tool used for variance estimation, and any bias
in the resulting standard error models was not measured.  In late 1997 this lack was identified as
a key problem, and it was intensively researched over a two year period.  As a result the ABS is
moving to a new standard for weighting and for variance estimation.

This paper describes the methodological principles behind the generalised regression weighting
approach used in the ABS for estimation in household surveys.  It then presents a number of
approaches to estimating variance for such estimates, and recommends the group jackknife
approach for standard use in the ABS.  These methods are available via SAS macros written
within the ABS.  They will be implemented as components of the Household Survey Facilities
(HSF) processing system.  It is also planned to make the group jackknife approach available
through the SUPERCROSS tabulation and aggregation facility so that variance estimates are
available for ad hoc requests.

Section 2 describes the development of weighting techniques and in particular the generalised
regression weighting approach.  Section 3 presents a variety of methods for estimating the
variance of these estimates.  Section 4 focuses specifically on the group jackknife approach to
variance estimation, and presents a theoretical justification.  Section 5 compares the variance
estimators in the context of a simulated population with systematic sampling of clusters. Section
6 describes an actual survey, the Australian Labour Force Survey,  and presents a comparison of
different variance estimators.   It also shows how the new methods apply to estimating variance
for complex estimates such as the trend.  Section 7 summarises results from a number of
evaluations conducted on more complex surveys.  These evaluations focus on the value of the
estimates for deriving variance models. Section 8 concludes with some comments on the
application of the techniques in generalised facilities in the ABS.  

1  



2  Weighting for household surveys

2.1 The household survey sample
For the purposes of selecting a household survey, the ABS maintains a sampling frame which
covers all dwellings in Australia.  Each state is divided into zones (two for each state and one for
each territory), then into "frame strata" (based on dissemination region, area type and population
density) and into finer geographic groupings e.g. collectors districts (CDs), blocks and clusters.
The physical process of sampling involves ordering the CDs within state by frame stratum and
systematically selecting CDs, taking account of their expected size.  The selected CDs are then
inspected to identify blocks and clusters, and finally a single cluster is selected.  The selected
CDs are used for a five year period in a variety of surveys, to save the expense of inspecting more
CDs than is necessary.  Different surveys, of course, select different clusters of dwellings.

This sampling process has a simple theoretical description.  Except in a few "sparsely settled"
strata, it is equivalent to listing all the clusters in a state in a set order (given by the sampling
frame), choosing a random start and then systematically selecting every K-th cluster in the list.
The value of K used for a state is known as the state skip.  The sample usually consists of all the
dwellings in the selected clusters, although smaller surveys may select a subset of dwellings from
each cluster.  

This sample design gives each in-scope dwelling in Australia a predefined probability of selection,
normally constant in each state.  Typically a survey will select all in-scope units in selected
dwellings.  In the rare case where a survey only selects some of the persons in a household, this
must be done at random, and appropriate information collected to ensure that the respondent's
probability of selection is known.

2.2 Linear weighting and selection weighted estimates
This paper looks at weighted estimates in which a weight   is associated with each unit i in thewi

A

sample.  The estimate of a population total Y  based on reported values  is then obtained byyi

weighted aggregation; that is,

 (2.1)ŷA = � i wi
Ayi

A superscript (A in this case) will be used to identify different weights and the corresponding
estimates. Unless otherwise stated, the summation in this paper is over all units in the sample.

Horvitz and Thompson (1952) proposed weighting each unit by the inverse of the selection
probability.  Let the selection probability of unit i be given by .  The inverse of this selection� i

probability is known as the selection weight and denoted .  Typically the selectionwi
� = 1/� i

weight equals the state skip.  The resulting selection-weighted estimator 

 (2.2)ŷ� = � i wi
�yi

would be unbiased if there was no non-response to the survey.  
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2.3 Post-stratified ratio estimates
Suppose that the units in the sample can be classified to post-strata p for which the population
counts  are known.  The post-stratified ratio estimator uses these population totals as auxiliaryNp

data to improve on an existing estimate.  The new estimate is given by

 (2.3)ŷP = �p(�i�p wi
� yi)Np/� i�p wi

�

= � i wi
Pyi

for for .  (2.4)wi
P = wi

�Np/�i�p wi
� i � p

The new weights are a pro-rata adjustment of the selection weights  so that the total weight inwi
�

each post-stratum matches the appropriate population total.  This technique was described in
Cochran (1963).

The post-stratified ratio estimate  will have lower sampling error than  if the   values areŷP ŷ� yi

sufficiently different between post-strata. In the presence of non-response at rates that differ
between post-strata,   should also have lower bias.  ŷP

2.4 Multi-step weighting  
A post-stratified ratio estimation step can be applied to a set of input weights other than the
selection weights, by substituting those weights for the selection weights  in (2.4).  This openswi

�

the possibility of successive steps of weighting, with the output weights from one step being
used as input weights to the next.

An example could be where the first step performs a non-response adjustment, with the
post-stratum categories chosen for similar likelihood of response.  The population counts for
these non-response categories could even be estimates rather than known totals.  A second step
could then adjust the weights to demographic benchmarks.

Another example arises in a two-phase survey, where certain questions are only asked of a
random subset of the sample.  It seems logical to weight the full sample, and then to use these
weights as input weights for weighting the subsample.  This may involve a non-response
adjustment step and a final adjustment to demographic benchmarks.

2.5 Generalised regression estimates
Post-stratified ratio weighting could be used to adjust successively to two or more sets of
benchmarks.  While this has some benefits, the resulting weights will sum to the last set of
benchmarks only.  The generalised regression method allows adjusting weights to add to
multiple sets of benchmarks in a single step.  

This approach was discussed in Bethlehem and Keller (1987), and is a particular case of  a more
general class of calibration estimates introduced by Deville and Särndal (1992).  The methods
were introduced to the ABS using the SAS macro CALMAR of Deville, Särndal and Sautory (1993).
More recently the ABS has produced an internally written program GREGWT which performs
similar computations but much more quickly.  The method uses the generalised regression
estimator and variants; the calculations are described in Singh and Mohl (1996).

Suppose that  is a row vector of auxiliary variables, and X is a corresponding vector ofxi

benchmark values.  Let  be input weights which give estimates  and .  Thewi
A ŷA x̂A = �i wi

Axi

generalised regression, GREG, or GR estimator is given by:

 , where (2.5)ŷGR = ŷA + (X − xA)�̂GR

(2.6)�̂GR = (� i(wi
A/ci)xi

�xi)−1 �i(wi
A/ci)xi

�yi
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Here  is a sample estimate of the parameter describing the regression of  against  in the�̂GR yi xi

whole population.  Typically  is used; larger values for   increase the penalty for changingci = 1 ci

the weight of unit i.  In what follows  will often be dropped to save space.ci

The GR estimator can be written in the weighted form

, for weights given by (2.7)ŷGR = � i wi
GRyi

, for (2.8)wi
GR = wi

A gi

(2.9)gi = 1 + (X − xA)(�i(wi
A/ci)xi

�xi)−1 xi
�/ci

Note that the weight adjustments  do not depend on the variable being estimated.  Thus thegi

same weights are used for any item we estimate.  Note also that may be a singular� i(wi
A/ci)xi

�xi

matrix - in this case, we can use any generalised inverse of this matrix in place of the matrix
inverse at (2.6) or (2.9). 

2.6 Examples of generalised regression

The post-stratified ratio estimator

In the post-stratified case the benchmarks   are population counts for PX = (N1,..., NP)
non-overlapping post-strata.  Thus each unit contributes to a single post-stratum, and the
auxiliary variable is an indicator vector  , where the 1 indicates the unit'sxi = (0, 0, ..., 0, 1,0, ..., 0)
post-stratum.  Writing  for the total weight from units in post-stratum p, then̂p

A = � i�p wi
A

estimator simplifies to

ŷGR = ŷA + �p(Np − n̂p
A)(n̂p

A)−1(�i�p wi
Ayi)

= �p
Np

n̂p
A (� i�p wi

Ayi)

which is just the post-stratified ratio estimator given at (2.3).

Calibrating to two sets of benchmarks

Given two sets of benchmarks  and  corresponding to different classifications, we set up XA XB xi
A

and  to indicate the class unit i belongs to under each classification.  Then we can use xi
B

 and  in the generalised regression formulae.  The formulae do notX = (XA , XB) xi = (xi
A , xi

B)
simplify as in the first example, since the matrix to be inverted is no longer diagonal.  The
resulting weights will add as required to both the sets of benchmarks.

Integrated weighting

It is also possible for the auxiliary variables  to be vectors of numbers rather than of indicatorxi

(zero-one) variables.  A common situation here is when the units i correspond to households,
but weighting is to be performed so that the estimated numbers of persons in various categories
match known demographic benchmarks.  Often we also impose benchmark constraints on
numbers of households in some other categories.  This is an example of what we call integrated
weighting (because it integrates the household weighting with person counts).  The method was
introduced by Lemaître & Dufour (1986).

In integrated weighting,  (the k-th element of the vector ) represents the contribution ofxi,k xi

household i to the k-th benchmark .  If  is a person count then  gives the number ofXi,k Xi,k xi,k

that type of person in household i.  If  is a household count then  will be a zero-oneXi,k xi,k

indicator variable.

ABS Methodology Advisory Committee, July 2000
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2.7 Generalised regression as a constrained minimisation
The GR estimator can be derived as follows.  We want to adjust the input weights  to get newwi

A

weights  which meet our benchmark constraintswi
GR = giwi

A

(2.10)� i wi
GRxi = X

In choosing the new weights, we want to make them as close to the initial weights as possible.
The GR estimator is the set of new weights that meet the constraints (2.10) while minimising the
generalised least-squares distance function given by

(2.11)FGLS = � i
ci(wi − wi

A)2

wi
A =� i ciwi

A(gi − 1)2

2.8 Restricting the weights or changing distance function

Looking at the estimator in this way opens up a range of alternative estimators.  For instance, we
could put range restrictions on the weights:

(2.12)Li � wi � Ui

Alternatively we could use a different distance function.  To penalise large proportional changes
in the weights (rather than simple difference) we can minimise the exponential distance function
given by

] (2.13)FEXP = � i ci[wi log(wi/wi
A) − wi + wi

A

This distance function ensures that the weights are non-negative, but they could be very high,
which is not desirable.  This distance function gives the same weights as a process called iterative
proportional fitting.

To compute the new weights under the extra constraints (2.12) or the exponential distance
function (2.13) requires an iterative algorithm.  The algorithms implemented by the macro
GREGWT are described in an Appendix.  They implement methods 5 and 6 of Singh and Mohl
(1996).).  These are methods that strictly meet any range restrictions like those in (2.12), even if by
doing so they fail to add to one or more of the benchmark constraints (2.11).  

It is possible to aim for some other compromise between range restrictions and benchmark
constraints, as in Rao and Singh (1997).  We preferred to go with the most computationally
practical methods.  A failure to meet the benchmarks is likely to signify a poor weighting
approach, and it seems best to flag this for human intervention rather than make an automatic
compromise.

ABS Methodology Advisory Committee, July 2000

5  



3  Variance estimation methods 

3.1 Why variance estimation is a difficult problem
Two aspects of ABS household surveys make variance estimation a difficult problem.  First, they
use a multistage sample design, resulting in a sample in which units are clustered geographically.
It is therefore important to use methods that account for this clustering.  Variance estimators
suitable for a simple random sample of units are not appropriate for this clustered data.
Furthermore, the clusters themselves are not selected by simple random sampling but by a
systematic sampling approach.  

Second, the estimates are fairly complex, being based on one or more stages of weighting using
the techniques described in section 2.  Some variance estimation methods are appropriate for a
single stage of weighting but do not measure the effect of multiple stages of weighting.

This section will outline some of the variance estimators that are used in household surveys.
Section 4 will then go on to describe in more detail the group jackknife variance estimator and
how it applies in ABS surveys.

3.2 The weighted residual variance estimator
Suppose that the first stage of selection is performed within strata. The unit at this first stage of
selection is referred to as the “variance group” - we could define it to be a grouping of clusters
rather than a single cluster if required.  The weighted residual variance estimator computes
variance at stratum level by comparing “weighted residuals” computed from the different
variance groups.  The method was discussed by Särndal, Swensson and Wretman (1989).  

Let stratum h contain  variance groups.  Suppose unit i has initial weight  and final weight Gh wi
A

 after a single stage of generalised regression weighting.  The weighted residuals variancewi
GR

estimator for  is given byŷGR = � i wi
GRyi

, where (3.1)var(ŷGR)=�h
Gh

Gh − 1 �g�h(êhg − êh)2

, and (3.2)êhg = � i�hg wi
GR(yi − xi�̂

GR)

(3.3)êh = 1
Gh

�g�h êhg

Here  is the regression parameter used in the generalised regression method.  The values �̂GR êhg

are known as the weighted residuals - they are a weighted aggregation of the difference between
a unit's observed value and its prediction using the regression parameters.

This approach is presented in Stukel, Hidiroglou and Särndal (1996), who quote its use in the
SUPERCARP package (Hidiroglou, Fuller and Hickman, 1980).  Yung and Rao (1996) obtain (3.1)
as an approximation to the Jackknife variance estimator; they call it the “ Jackknife Linearisation
variance estimator”.  In the ABS it has been used since at least the early 1980s for the case of a
post-stratified ratio estimator.  This ABS application has been called split-halves because is uses
two variance groups in each stratum.

3.3 Problems with using the weighted residuals method

Single stage of weighting

The method assumes a single step of weighting - it cannot fully reflect the effects of multiple
steps of weighting.  It is possible to calculate a variance estimate using (3.1) to (3.3) based on the
last step of the weighting, but such a variance estimate may be subject to bias.  This use of the

ABS Methodology Advisory Committee, July 2000
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method may not reflect the variation in previous steps of weighting, as only the residuals from
the last step are calculated.  

Biased for fine calibration

If the calibration being performed is very fine, some of the regression parameters may be very
strongly influenced by a few individuals.  In such a case, these individuals will have small
residuals that do not fully reflect the instability in the estimation of the regression parameters.  As
a result, the weighted residual variance estimator will tend to underestimate variance when the
calibration is very fine.  It is good practice to avoid such fine calibrations in weighting.

Applies directly only to GR estimates

The method applies directly only to linear combinations of GR estimates.  To apply to the ratio of
two estimates requires an approximation based on linearising the ratio using a Taylor Series
expansion.   To apply to one of the variants of the GR estimate (such as a calibration estimate
using the exponential distance function),  Stukel, Hidiroglou and Särndal (1996) suggest it is
sufficient to use formula (3.1) above but using the GR weights.  Our implementation uses the
final weights in formula (3.1) but computes residuals at (3.2) based on the GR regression
parameters (which are available at the first iteration of the weighting algorithm).  This appears to
provide estimates of satisfactory reliability.

Computations require detailed data from the weighting process

For the post-stratified ratio estimator the computations are straightforward.  For more general

GR estimators the regression parameters  need to be computed for each estimate of interest.�̂GR

The macro CALMAR does not output the required information for these calculations.  The newer
SAS macro GREGWT provides the facility to request tables as an output of the weighting process,
and for these tables to include weighted residuals standard errors.  This proved more convenient
than attempting to store the required information for later variance calculations.

A separate issue is that information on cluster membership is needed in order to perform the
weighted residuals variance calculations.  This information is considered too sensitive for release
on confidentialised unit record files.  So external users of the survey data cannot perform
weighted residuals variance calculations to go with their analyses.

Assumes stratified random sampling of variance groups

In the ABS the selection of clusters is not done by simple random sampling within strata, but
systematically in each state.  So in the ABS the “strata” on the sample frame are not actually
treated as strata in sampling - they are used as an ordering variable for a systematic selection of
clusters within each state. 

Historically, the sample frame “strata” have been treated as strata for variance estimation.  This
gives a much more stable variance estimator, but produces a variance conditional on the number
of clusters actually selected in each frame stratum - this could be biased downwards for the
unconditional variance, but any bias seems to be small in practice.

The systematic sampling leads to difficulties even assuming stratified sampling. The usual form
for the weighted residuals estimator treats each cluster as a separate variance group - this is the
form this paper will refer to as weighted residuals (although in the ABS it has been termed the
ultimate cluster estimator).  But these variance groups do not reflect the systematic sampling of
units.  

ABS Methodology Advisory Committee, July 2000
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Split-halves - dealing with stratified systematic sampling

To get around this we can form variance groups systematically and treat them as the first stage
units.  The variance groups will be more like a simple random sample than the clusters
themselves.  In the ABS this approach has been applied by dividing the clusters systematically
into two variance groups - this is the technique called split-halves.  In split halves, the formulae
(3.1) to (3.3) are used, but the number of variance groups  is constant for each stratum at two.Gh

The formula (3.1) in this case reduces to

(3.4)varSH(ŷGR)=�h(êh1 − êh2)2

The use of two groups can lead to fairly unstable variance estimates, even after aggregating
across strata.  This may not be of as much concern as a marked bias, particularly as an input to
variance modelling (discussed in 7.1).  

Using the split-halves approach was considered worthwhile in the ABS to ensure that the
standard error estimates included any benefit of our ordering of clusters within strata.  Previous
measures of this benefit have suggested a five percent decrease in standard errors compared to
using a random ordering within strata.  The study presented in section 6 suggests that the bias
from using the weighted residual form rather than split-halves is small for key Labour Force
Survey estimates - perhaps two percent.  This seems inconsistent with there being a marked
benefit from the ordering of clusters within strata.

3.4 An approximate split-halves variance estimator
Given the computational difficulties of the weighted residuals estimator (and recognising that it
is only an approximate variance estimator anyhow) an approximation may be appropriate.  In the
ABS, a SAS macro has been available since 1985 for split-halves variance estimation for tables of
estimates assuming a post-stratified ratio estimator.  Until the GREGWT macro became available,
this macro was used for approximate variance calculation in situations involving calibrated
weights.

The approximation requires assigning each unit to a post-stratum, choosing a post-stratification
which approximates the effect of the weighting process without allowing any post-stratum to
contain only a few individuals.  For example, calibration to two sets of benchmarks as described
in section 2.7 could be approximated by a post-stratification to only one of the two sets of
benchmarks.

Residuals are now calculated as a difference between a unit’s response and the mean response
for its post-stratum.  Thus, if the mean for post-stratum p is given by

    (3.5)yp
A =

� i wi
Ayi

� i wi
A

we replace the weighted residual calculation at (3.2) by the following:

(3.6)êhg
POST = �p � i�hgp wi

GR(yi − yp
A)

This method seems to give similar variance estimates to the full split-halves approach in many
practical situations, provided that a reasonable choice of benchmarks is made.  Some
comparisons will be provided in section 7.

It may be useful to use this approximate approach when it is difficult or inconvenient to
reproduce the weighting process when calculating variances.  A weighted residuals version of the
approximation could be used rather than split-halves if desired.  

ABS Methodology Advisory Committee, July 2000
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3.5 Other widely-used variance estimators
A number of other variance estimators are in use in other statistical agencies, including balanced
repeated replications, the drop-out-one jackknife, and methods using detailed knowledge of
selection probabilities and joint probabilities.  A good introduction to the range of methods
available is given in Wolter (1985).

These variance estimators typically assume a  probability sample of a fixed number of variance
groups from each stratum at the first stage of selection.  In this they are similar to the weighted
residuals estimator examined above.  The variance calculation formulae resemble (3.1) in that
variance calculations are performed for each stratum and then summed across strata.

These approaches are not a direct match to the ABS sample design, where state plays the role of
stratum.  The "frame stratum" on the ABS sampling frame is not used as a stratum, but to order
the clusters for systematic selection.  This systematic selection is therefore a critical part of the
ABS sampling scheme, and cannot be well approximated as a probability sample of clusters.

To apply these methods in the ABS setting, one reasonable approach is to treat the sample as
though the frame strata were actual strata, and to condition on the number of clusters selected.
This is the approach that the ABS applies in its use of weighted residual method.  Within these
frame strata it may be reasonable to treat the clusters as a probability sample.

An alternative approach is to form variance groups systematically, in such a way that it is
reasonable to treat the sample of variance groups as a probability sample.  This is done within
strata in the split-halves approach described above (using two variance groups within each
stratum).  It is also the basis for the group jackknife approach.  

The group jackknife corresponds to a standard drop-out-one jackknife variance estimator, but it
assumes no stratification.  It is applied to variance groups formed in a systematic fashion across
strata.  This turns out to give a good variance estimator with a number of practical advantages.
The group jackknife and its theoretical justification will be described in section 4.
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4  Group jackknife variance estimation

4.1 Household survey sample selection 
A household survey sample can be viewed as a systematic sample of clusters within each state,
taken with probability proportional to size (PPS).  (Various non-standard practices can be
accommodated within this view by appropriate definition of cluster and by choice of  the cluster
size measure).

Within each state  the clusters are numbered purposively  (in the current design theyh I = 1, ...,Nh

are sorted by stratum and then serpentine order).  A sample is taken by choosing for each state a
skip  and a random start .  If the cumulative size measure is (with ), theKh kh � (0, Kh] ChI Ch0 = 0
ith selected cluster in state h is that cluster I for which  .  This gives forCh,I−1 < kh + (i − 1)Kh � Ch,I

each state h a random number  of selected clusters, with total number of clusters .nh n = �h nh

4.2 Forming replicate groups
The group jackknife depends on dividing the selected clusters into G variance groups or
replicate groups.  This is done by going through the selected clusters ordered by state h and
selection i and assigning clusters to replicate groups in cyclical order.  This gives G systematic
samples of clusters.  The state skips in each replicate group are given by , but each replicateGKh

group has different start points taken from the set   for each state h.kh, kh + Kh, ... , kh + (G − 1)Kh

4.3 Justifying the group jackknife for systematic selection
Jackknife variance estimators are usually justified in a context of a stratified sample and assuming
probability proportional to size (PPS) or simple random sampling (SRS) of clusters within strata.   
For the group jackknife this justification is given in Kott (1998).  This paper will look at the ABS
situation where the sample is obtained systematically within state. 

In the ABS the sample of clusters within each state is systematic.  It would be unreasonable to
ignore this and treat the clusters as a PPS random sample selected within each state.  We have
ordered the clusters purposively, and selected systematically, in order  to make the sample more
representative.  If this has been effective it would reduce the actual variance, but it would
increase a variance estimate produced under the assumption of simple random sampling of
clusters.

To make progress on measuring the variance of an estimate we proceed as follows.  Any given
replicate group that could have arisen by our selection process can be specified by a set of
random starts where , being the random starts used for systematicd = {d1, ..., d8} dh � (0, GKh]
sampling in the eight states.  The selections in the replicate group are then given by the clusters I
for which   for some integer  i.  Ch,I−1 < dh + iGKh � Ch,I

Let D be the set of all possible replicate groups corresponding to all the random start sets d that
could have arisen by our selection process.  By construction, any element of D could have arisen
as a replicate group.  But there are elements of D that could not have arisen together in a set of G
replicate groups.  In fact, any set of  G replicate groups that we select are obtained in a systematic
manner from the set D.  

To obtain a variance estimate, we have to assume that the G groups were generated at random
(with replacement) from D.  This assumption leads to variance estimates with a slight upward
bias.  First, because we assume with replacement selection, two random groups with starts
selected from D may include the same clusters, whereas the actual selections cannot select a
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cluster twice. This bias will be small if the proportion of clusters selected within any state is small.
Second, there is a bias since the actual replicate groups were chosen systematically.  

So we end up having to treat a systematic sample (of replicate groups) as a random sample in
order to get a variance.  How then are we better off than just treating the systematic sample of
clusters as a random sample?  In fact, we are much better off.  Because each replicate group in D  
is itself a systematic selection of clusters, we can expect the major benefits of our systematic
sampling of clusters to be represented in each replicate group.  So the replicate groups are not
nearly as different to each other as the clusters were, and any bias from treating them as a
random sample is therefore much smaller.  This argument applies as long as the replicates
contain sufficiently many clusters i.e. provided that G is not too large.

4.4 Group jackknife variance estimator
Suppose that  are estimates of true mean  from each of G replicate groups selected aty1, ..., yG Y
random from the set D.  Let .  Define  to be the jackknife estimate obtained byy = 1

G �g=1
G yg y(g)

deleting replicate group g, given by 

(4.1)y(g) = 1
G−1 (Gy − yg)

Then , where the subscript D denotes expectation over the possibleED(y) = ED(yg) = ED(y(g)) = Y
drawings of replicate groups from D.  Then by simple calculation

 =  = (4.2)ED( G−1
G �

g=1

G

(y(g) − y)2) ED( 1
G(G−1) �

g=1

G

(yg − y)2) varD(y)

The formula

 (4.3)vGJ(y) = G−1
G �

g=1

G

(y(g) − y)2

is called the group jackknife variance estimator for  .  Note that a stratified form of they

jackknife variance estimator is not necessary.  Thus we have shown:

Theorem 1:  Group jackknife estimator of variance is unbiased for variance of simple mean

4.5 Group jackknife for more complex estimators
For the simple estimator of mean given above the group jackknife variance estimator is unbiased
(given the assumption of randomly sampled replicate groups).  The group jackknife variance
estimator can be defined for a more general estimator as follows.  

First, divide the sampled clusters into G replicate groups.  Produce the overall estimate  usingŷ

all the data.  For each replicate group g produce the jackknife estimate  by applying exactlyŷ(g)

the same estimation process to the data excluding replicate group g.  The group jackknife
variance estimator is then given by

(4.4)vGJ(ŷ) = G−1
G �

g=1

G

(ŷ(g) − ŷ)2

For complex estimators this may be biased.  The bias for a generalised regression estimator is
explored below.

4.6 Group jackknife for generalised regression estimators
The generalised regression estimator can be written in the form

(4.5)ŷGR = X(� i aixi
�xi)−1 �i aixi

�yi
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where X is a row vector of benchmarks and  is the corresponding row vector of benchmarkxi

values for unit i.  (This form is equivalent to the form given previously provided that there is a
vector  such that   for all i.)� xi� = 1

The jackknife estimates are given by

(4.6)ŷ(g)
GR = X(� i�g aixi

�xi)−1 � i�g aixi
�yi

where  denotes summation over all units not in replicate group g.  The group jackknife� i�g

variance estimator (4.4) is then applied to these estimates. 

Theorem 2: Expectation of jackknife variance estimator for generalised regression  

Under the assumption that the replicate groups are randomly drawn from a set D

(4.7)ED(vGJ(ŷGR)) = varD(ŷGR) + O(n−2)

Proof:

Write ,  and ,�̂g = �i�g aixi
�xi �̂ = 1

G � j �̂ j �̂ (g) = 1
G−1 � j�g �̂ j

and    , and �̂g = �i�g aixi
�yi �̂ = 1

G � j �̂g �̂ (g) = 1
G−1 � j�g �̂ j

so that  and .ŷGR = X�̂−1�̂ ŷ(g)
GR = X�̂ (g)

−1 �̂ (g)

Also let  and .  � = ED(�̂g) = ED(�̂) = ED(�̂ (g)) � =ED(�̂g) = ED(�̂) = ED(�̂ (g))

Then we can write

ŷ(g)
GR − ŷGR = (X�̂ (g)

−1 �̂ (g) − X�−1�) − (X�̂−1�̂ − X�−1�)

= X (�̂ (g)
−1 −�−1)� + �̂ (g)

−1 (�̂ (g) −�) − (�̂−1 −�−1)� + �̂−1(�̂ −�)

(*)� X (�̂ (g)
−1 − �̂−1)� +�−1(�̂ (g) − �̂)

(**)� X �−1(�̂ (g) − �̂)�−1� +�−1(�̂ (g) − �̂)

= X �−1 1
G−1 (�̂ − �̂g)�−1� +�−1 1

G−1 (�̂ − �̂g)

So ED(vGJ(ŷGR)) = ED( G−1
G �

g=1

G

(ŷ(g)
GR − ŷGR)2)

� ED( 1
G(G−1) �

g=1

G

(X(�−1�̂g�−1� +�−1�̂g) − X(�−1�̂�−1� +�−1�̂))2)

      as in theorem 1= varD( X(�−1�̂�−1� +�−1�̂))

(**)� varD( X(�̂−1� +�−1�̂))

(*)� varD( X(�̂−1�̂))

= varD(ŷGR)

The approximations at (*) arise by adding or subtracting terms of the form or (�̂−1 −�−1)(�̂ −�)
.  These are terms of order .  The approximations at (**) arise by using a(�̂ (g)

−1 −�−1)(�̂ (g) −�) n−2

Taylor series expansion and ignoring terms of order   or greater.   This proves the theorem.n−2

 

4.7 Group jackknife for functions of estimates
Taylor series expansions are useful to show the application of the jackknife to a function of one
or more estimates for which the jackknife is valid.  For example, suppose that we have estimates 

 of population values .  Using a Taylor series expansion, a function canŷ1, ..., ŷJ Y1, ..., YJ f(ŷ1, ..., ŷJ)
be written in the form

 higher order termsf(ŷ1, ..., ŷJ) = f(Y1, ..., YJ) + c1(ŷ1 − Y1) + ... + cJ(ŷJ − YJ) +
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So (*)ED(vGJ(f(ŷ1, ..., ŷJ))) � ED(vGJ(c1ŷ1 + ... + cJŷJ))

  if the group jackknife is valid for each estimate� varD(c1ŷ1 + ... + cJŷJ)

(*)� varD(f(ŷ1, ..., ŷJ))

It would be possible to approach the estimation of variance for such a function by doing the
Taylor Series expansion and then using the group jackknife on the resulting linear expression.
This appears to be inferior to applying the group jackknife directly - that is, producing a function
value from the data dropping out each replicate and then applying (3).  The reason is that the
approximations at (*) in this derivation can be expected to cancel each other to some extent.

4.8 Properties of the group jackknife approach

Fixed number of replicate weights 

To compute the variance of an estimate  using the group jackknife approach requires repeatingŷ

the estimation process G times to obtain the jackknife estimates .  This can be madeŷ(g)

straightforward by providing G replicate weights alongside the usual weights.  The replicate
weights are the set of weights  for which the jackknife estimates of total are obtained byw(g) i

weighted aggregation i.e.  .  Given these replicate weights, any estimate that canŷ(g) = �i w(g) iyi

be produced from the weighted data file can also be produced for the G replicates, and so a
jackknife variance is available.

The replicate weights are obtained by performing all the steps of weighting but starting with a
different set of selection weights.  The selection weights for the whole sample  are replaced bywi

�

replicate selection weights, which for replicate group g are given by

for units in group gw(g) i
� = 0

for units not in group g= G
G − 1 wi

�

Importantly, once the replicate weights are provided a user can produce variance estimates from
the unit data without needing to know any details of the weighting process, nor details such as
stratum and cluster membership of the units.  This opens the possibility of making replicate
weights available to external researchers of confidentialised unit record files.  It also allows a
standard and simple process for generating standard errors within a tabulation package such as
SUPERCROSS.  

Simple application to complex estimates

The group jackknife provides a variance estimate for complex estimates, such as ratios.  All that is
required is that the estimates be produced separately using each set of replicate weights, and the
jackknife formula applied to the results.  There are a few exceptions to this - it is not clear that
the jackknife will provide good estimates for the variance of quantiles such as the median (see
Rao, Wu and Yu 1992).  An indirect approach is available for estimating the variance of a quantile
based on replicate weights - the method (due to Woodruff (1971)) is used in the software
package WESVARPC.

Allowing for multiple steps of weighting

The group jackknife allows for multiple steps of weighting in a fairly natural way.  The initial
sample is divided into replicate groups, and initial replicate weights are produced.  These are
zero for units in a given replicate group and the selection weights multiplied by G/(G-1) for other
units.  Each of the G sets of weights are then taken through all the stages of weighting.
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This process is made easier by the GREGWT tool, which caters for a list of input weights for each
unit and performs generalised regression weighting for each input weight.  GREGWT also allows
for the benchmark values to take different values for different replicates, as would arise if they
were estimated from an earlier phase of the survey. 

Some disadvantages

The group jackknife variance estimator is likely to be more variable than an estimator which
works at cluster level.  This is because only G replicates are available from which the variance is
estimated.  If G is too small the variance estimator could be quite unstable.  On the other hand,
too large a G may bias the variance, as the G replicates will not resemble each other sufficiently
(because of the systematic sampling).  Higher values of G also lead to a higher storage and
computational cost.

Kott (1998) reports on using the group jackknife in the US National Agricultural Statistics Service,
with G = 15.  He notes that this leads to 95 percent confidence intervals about ten percent
longer than usual, because they should based on to a student's t distribution with 15 degrees of
freedom, rather than a normal distribution.  This is less of an issue for  G = 30.

4.9 The zoned jackknife
Suppose we have divided the sample into G groups, and have produced G replicate weights
using the standard grouped jackknife approach of dropping one group at a time.  This gives a
variance estimator with only  degrees of freedom, which may be too variable for someG − 1

purposes.

An approach to increasing the stability of the estimator is to divide the units into a number of
"zones", in such a way that estimates from the different zones have very little correlation.  We can
now write an estimate of total in the form  , for  the estimate of the total for zone j.  Ifŷ =�j ŷj ŷj

we assume that estimates from the zones are independent we can estimate the variance of   asŷ

the sum of the group jackknife variance estimates for the zone estimates .ŷj

In many ABS household surveys estimates from the different states and territories could be
considered approximately independent, as usually sampling and estimation across states are
independent.  The zoned jackknife is then likely to be quite good, with a low bias and lower
variability than the group jackknife.

Properties of the zoned jackknife

The zoned jackknife variance estimate can be obtained using the same replicate weights as the
group jackknife.  The only extra information required is the zone to which each unit belongs.
Suitable information for specifying zone may be available on a confidentialised unit record file
provided for analysis outside the ABS.

The zoned jackknife should be more stable than the group jackknife since we have increased the
number of degrees of freedom in the variance calculation.  It may have a bias if there are
post-strata or selection strata that lie in more than one "zone".

The zoned jackknife only applies directly to estimates of total.  Functions of totals (e.g. ratios)
would need to be linearised before the calculation.  This will be presented in more detail in
section 6.3.
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5  A simple simulation

5.1 Simulating a population of clusters
We performed some simple simulations to get a feel for the behaviour of the group jackknife  
variance estimator (equation (4.4)) when the sample is selected systematically.  In the
simulations it is compared to two versions of the weighted residuals variance estimator.
Standard weighted residuals (equation (3.1)) computes variances at stratum level by comparing
all the cluster values.  The split-halves version (equation (3.4)) computes variances at stratum
level by comparing two variance groups formed systematically within the stratum.

We simulate a population of N clusters by generating cluster values from the distribution:

yi ~N(r(2 i − 1
N − 1 − 1), 1)

so that the underlying means go from - r to r as the cluster identifier i goes from 1 to N.  The
value r controls how well the ordering of the clusters predicts their value; for r=0 the ordering
gives no information.  The population is divided into H frame strata, with stratum h containing
clusters i for which  .  (h − 1)N/H < i � hN/H

In each simulation we have K systematic samples of clusters with skip K from this population.
(Thus the frame strata are not used in selection.)  Each sample gives an estimate of the total 

.  We can evaluate the true variance of this estimate using the K possible systematicY = �i yi

samples.  

For each sample we can also compute variance estimates of the three types being considered.
The mean and standard error of these variance estimates is obtained across the K samples.  By
comparison to the true mean for the population, the average bias and root mean squared error
of the variance estimators can be obtained.

Note that this simulation is very simple, with the estimate of concern being a simple mean of
cluster values across the population, rather than a generalised regression estimate.  It is
interesting because it shows how the various estimators perform when the situation is systematic
sampling, the situation assumed by the group jackknife approach.  Also note that the larger
values of r are not chosen as realistic.  Even r = 2 suggests clusters that are systematically very
different to each other relative to the variability of estimates from the clusters.  The r = 6 case is
presented to show what happens in the extreme, rather than as a realistic possibility.

5.2 Results of simulations
The results shown in Table 1 are average figures from 500 simulations with N = 123456 and K =
177 (so number of sampled clusters is about 133).  Three cases are presented: r = 0 (where
there is no benefit from systematic sampling), r=2 and r=6 (which have increasing amounts of
benefit from systematic sampling).  For the group jackknife we tried numbers of groups G = 15
and 30.  For the weighted residuals method we divided the population into H = 5 and 30 strata.
Split-halves was computed with 30 strata, but forcing the stratum sample sizes to be even.
Finally, the zoned jackknife was applied using G=30 replicate groups, but dividing the
population into eight equal zones consisting of consecutive clusters.  

Values for bias, standard error and root mean squared error are presented in Table 1 as
percentages of the mean of the true standard errors from the 500 simulations (which was about
26.5 for each of the three r values). 
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Table 1: Bias, standard error and root mean squared error of standard error estimates
averaged over 500 simulations, as percentage of the mean true standard error

-1.0
12.9
13.9

18.3
5.1

19.0

1.0
2.8
5.2

22.2
3.2

22.5

10.4
14.3
18.2

2.0
19.5
20.3

bias
standard error
root mean squared error

High benefit of ordering (r=6): True standard error mean=26.31

-1.0
12.8
13.9

2.3
4.7
7.0

-0.2
2.7
5.2

2.4
2.7
5.6

0.2
13.1
14.0

-1.5
18.7
19.4

bias
standard error
root mean squared error

Some benefit of ordering (r=2): True standard error mean=26.56

-1.1
12.9
13.9

0.0
4.7
6.7

0.0
2.7
5.4

0.1
2.7
5.4

-0.8
13.1
14.1

-1.7
18.7
19.5

bias
standard error
root mean squared error

No benefit of ordering (r=0): True standard error mean=26.34

H=30**G=30*H=30H=5G=30G=15% of true standard error

Split-
halves

Zoned
jackknife

Weighted residualsGroup jackknifeaverage values from 500
simulations

*   The clusters were divided into eight zones for the zoned jackknife calculation
** Stratum sample size was set to multiple of two for the split-halves calculation.

The weighted residuals variance estimator stands out as superior to the others, provided that the
number of "strata" is sufficient to capture most of the benefits of the purposive ordering of the
clusters in the systematic sample.  The split-halves estimator within strata does not do as well.  By
using fewer degrees of freedom the estimator is less stable, and this is not compensated for by
any reduction in bias.

The group jackknife variance estimator has quite a high variability, due to the reliance on a
relatively small number (15 or 30) of groups.  The variability is the main contributor to the root
mean squared error of the estimator of standard error.  There is some danger of introducing an
appreciable bias if the systematic sampling is very important (the r=6 case here) and we use too
many groups.  In such a case the systematic difference between the groups is large enough to
bias the standard error estimates upward.

The zoned jackknife has considerably lower variability than the group jackknife, at the cost of an
increased bias.  The bias remains small compared to the improved variability, particularly for the
more realistic cases r = 0 or 2.  
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6  Example: Labour Force Survey 

6.1 Characteristics of the Labour Force Survey
The Labour Force Survey is a straightforward example of a  household survey using the ABS
household frame.  It is a very large survey, with around 30000 households sampled each month.
The availability of monthly repeats of the same survey makes it a good setting for comparing the
various estimators of variance.  It also allows us to demonstrate the use of the group jackknife for
estimating the variance of complex estimates that use data from more than one month - e.g.
movement of unemployment rate, or trend of employed persons.

The Labour Force Survey estimates are weighted using post-stratified ratio estimation, with 540
post-strata (14 geographic regions by two sexes by 20 age groups). 

6.2 Comparison of variance estimators
Variance estimates were obtained for estimates of employed persons and unemployed persons
categorised by sex , broad age group and marital status.  Each estimate had its variance
computed a number of ways.  First, the group jackknife with 15, 30 and 60 replicates (which will
be labelled J15, J30 and J60 respectively in the graphs).  Second, the weighted residuals variance
estimator WR using frame strata as strata.  Third, the split-halves variance estimator SH, again
using frame strata as strata.  Finally, the zoned jackknife was used, with 30 replicates and using
state of usual residence as the zone variable.  (State of usual residence is used in
post-stratification, while state of enumeration is used in selection.  Which to use as a zone
variable appears to be a matter of convenience, since the two are almost identical.)

Graph 1 shows estimates of relative standard error (RSE) for employed persons from  January
1993 to December 1999.  Given that the sample design is consistent over time, we would expect
the true relative standard error to change slowly (except perhaps between September 1997 and
April 1998 when a new sample was introduced).  The time series is presented to show the
variability of the different estimates from month to month.  This variability is much higher for the
group jackknife estimators and the split-halves estimator than for the weighted residuals
estimator.  On the other hand, the difference between the estimators would appear to average
about zero.
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Graph 1: Estimated relative standard error, employed persons, January 1993 to December 1999
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The group jackknife using only 15 replicates (J15) gives estimates that are considerably more
variable than when using 30 replicates (J30).  Using 60 replicates (J60) gives even lower
variability.  The zoned jackknife (ZJ) has lower variability than J60 even though it uses only the
same 30 replicate weights used for the J30 estimator..  

The comparison here seems to show that the split-halves estimator (SH) has lower variability
than the group jackknife estimators, but greater than the weighted residuals (WR) estimator.
The stability of the weighted residuals estimator is very noticeable, with the exception of an odd
value in March 1993.  The smoothness of the weighted residuals estimates increases our
confidence in the reliability of this method. 

To get a feel for the likely bias of the standard error estimates, we look at the difference between
the average estimate from each method and the average estimate from the WR method, as a
percentage of the average standard error using WR.  Graph 2 presents these percentage
differences for a set of twenty survey estimates.
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Graph 2: Mean difference from WR estimate for various standard error estimates 
(as percent of the mean standard error using the WR estimator)
Averages are taken over the period January 1993 to December 1999
Identifiers for the survey estimates use the code: E/U=Employed/Unemployed; 
M/F=Male/Female; W/N=Married/Not married; Y=Under 25 years of age

E
EM EF EW EN EY

EY
M

EY
F

EY
W

EY
N U

U
M U
F

U
W U
N U
Y

U
YM U
YF

U
YW U
YN

Survey estimate identifier

-10

-5

0

5

10

M
ea

n 
di

ffe
re

nc
e 

fr
om

 U
C

 S
E 

(%
 o

f U
C

 S
E)

  SH

  J15

  J30

  J60

WR

ZJ

It appears that none of the estimators are systematically different from the others by more than a
few percent.  The split-halves estimates are somewhat lower than the others, but it is not clear if
they are more or less biased than estimates from weighted residuals or  the group jackknife.  The
ZJ estimates are somewhat higher than the others, and this is likely to be a slight positive bias.

To get a measure of the variability of the standard error estimates, suppose that the true relative
standard error  was a linear function of time.  From a given set of standard error estimates we can
fit this regression line and obtain a residual from this line at each time point.  Averaging the
square of this residual over time gives a root mean squared linear residual (RMSLR) which
measures the variability of the estimates around their linear interpolation.  This root mean
squared linear residual was computed for each estimator for the set of twenty estimates used in
Graph 2.  Graph 3 shows the root mean squared linear residuals for the SH, J15, J30, J60 and ZJ
estimators as a percentage of the average standard error using WR.
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Graph 3: Root mean squared linear residuals for various standard error estimates 
(as percent of the average standard error using the WR estimator)
Linear residuals are defined to be the difference from a linear interpolation
Means are taken over the period January 1993 to December 1999
Identifiers for the survey estimates use the code: E/U=Employed/Unemployed;
M/F=Male/Female; W/N=Married/Not married; Y=Under 25 years of age
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From Graph 3 we see that the variability of the standard error estimates (around a straight line
fitted through them) is consistently greater for the group jackknife method than for the weighted
residuals method, with the difference reducing as more replicates are used.  The split-halves
estimates are more variable than the weighted residuals estimates, but less variable than the
group jackknife even if 60 replicates are used.

The root mean squared linear residual values in graph 3 are larger than any corresponding biases
suggested by graph 2, particularly for the more variable estimators.  It thus appears that variability
of the standard error estimates is a greater concern than any bias they may have.  Even for  fitting
a variance model (as will be described in 7.1) a bias of the order indicated by graph 2 is unlikely
to be of practical importance.

6.3 Standard errors for more complex estimates 

Group jackknife calculation straightforward

The application of the group jackknife method to complex estimates was discussed in section
4.8.  The complex estimate is simply calculated using each of the replicate weights, and the
jackknife variance is then calculated using the standard formula (4.4).  This approach is quite
straightforward.

Weighted residuals requires linearisation

Obtaining variance estimates using the weighted residuals method is more difficult.  A good
method is presented by Andersson and Nordberg (1994).  
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First, note that it is simple to produce the weighted residuals variance estimates for an estimate
that is a linear combination of estimates of total.  The weighted residuals at stratum by variance
group level are in this case obtained by applying the linear combination to the weighted residuals
of the estimates of total.  The formula (3.1) can then be applied to obtain variance estimates.

For non-linear functions of estimates of total, we can apply this same method to a linear
approximation of the function obtained by a Taylor series expansion.  This approach is well
established - see for instance Särndal, Swensson and Wretman (1992).  Binder (1996) discusses a
general approach to calculating the linearisation variance estimator for complex weighting
including generalised regression estimates. The main difficulty is in programming the method -
this has in many agencies restricted its application to a few predefined forms of estimate.
Hidiroglou, Bellhouse and Stafford (1997) proposes to use symbolic computation to automate
the linearisation computation.

In the ABS a general program has been written to compute weighted residuals variance estimates
for complex functions of generalised regression estimates.  This program requires the user to
specify the original function and the appropriate linearised form, leaving the computer to do the
calculations.  An automatic approach to the linearising of complex estimates has been applied by
Andersson and Nordberg (1994) in the software CLAN. 

Applying to a ratio estimate

A simple example that contrasts the group jackknife approach and weighted residuals
approaches would be an estimate of ratio (such as unemployment rate).  Here the group
jackknife computes the ratio estimate separately for each replicate, then applies the jackknife
formula (4.4) to obtain a variance estimate.  This is straightforward and not computationally
burdensome provided the number of groups is not too large.

The weighted residuals approach can provide a variance estimate after linearising the ratio.  For
estimates  of total Y  and  of total Z we can writeŷ ẑ

  
ŷ
ẑ

=
Y +�y

Z +�z
�

Y
Z + 1

Z (�y + �z
Y
Z )

This linearisation is used to produce approximate weighted residuals  at stratum by varianceêhg
Y/Z

group level based on the weighted residuals  and  of the two variables:êhg
Y êhg

Z

êhg
Y/Z = 1

Z (êhg
Y + êhg

Z Y
Z )

These are then used in formula (3.1) to give the variance estimate.

Applying to estimates from multiple months

Either method can be applied to various estimates that are a linear combination of a number of
months of data e.g. month to month movement, quarterly average, or even a linear
approximation to the X11 trend.

In applying these methods to a repeating monthly survey we need to redefine the first stage
sampling unit.  The first stage sample is viewed not just as selecting clusters of dwellings but as
selecting a sequence of clusters that will be interviewed over a long period.  So the dwellings
selected at a time point plus all the dwellings that replace them in sample over time are seen as
belonging to the same first stage sample unit or cluster.  For variance estimation it will be
important to keep track of which units are in the same cluster at different times.

This definition of cluster enables the estimation of the variance of estimates based on multiple
time points.  The contribution of a cluster to a total is simply the sum of the contributions of all
the units that are in that cluster at the different time points.  
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7  Evaluations for complex survey weighting situations

7.1 Modelling variances
The Labour Force Survey provided a good setting for comparing the variability of different
variance estimators.  In particular, we had the opportunity to compare the same variance
estimates for a variety of time points.  This option is not available for evaluating one-off surveys.
Evaluations of variance estimators in these surveys have focused on  how well the variance
estimates can be used to fit a model.

Variance models, or generalised variance functions, are used by the ABS to provide an
approximate variance for an estimate as a function of the size of the category being estimated —
the size often being measured by  the estimated number of persons in the category.  The usual
approach to fitting such a model is to define a large number of categories (such as combinations
of state, age group, marital status and employment status) for which estimates and their
variances are calculated.  Size measures for the categories are also produced - for person
estimates these are usually the estimates themselves.

Write  for the relative standard error estimate for an estimate for category c with size measure Rc

.  A variance model is used to fit  to , usually taking the form:Ec Rc Ec

log(Rc) = a + b log(Ec) + c log(Ec)2 + �c

with the errors  assumed independent normal, often with common variance.  The fitted model�c

is published using tables from which a user can predict the relative standard error of any
estimate (of the type modelled), given the size measure for the category the estimate applies to.

We can look at the variability of particular relative standard error estimates  by observing theirRc

spread around the modelled value.  Unfortunately, even if we had the true relative standard error
values, they would not fit the model exactly.  So comparisons of the different variance estimators
in this way is limited to whether they lead to different models and whether the modelled values
are noticeably more variable.

7.2 Some results for the National Nutrition Survey
The 1995 National Nutrition Survey (NNS) was a complex survey in that it was a subsample from
a larger survey, the National Health Survey 1995 (NHS).   The weights for the NNS were obtained
by performing successively three sets of adjustments to the weights the sampled units had in the
NHS.  The first set of adjustments dealt with a unit's probability of selection in the NNS.  The
second set aimed to reduce the effect of differing response rates among various groups in the
population.  These included differing adjustments for non-response classes based on modelling
of the non-response probability.  The final adjustment was to perform calibration of the weights
to a number of demographic benchmarks.

For application of the group jackknife to this survey the NHS units were divided into 30 replicate
groups.  For each group in turn, the units excluding that group were put through all the stages of
adjustment and given a resulting weight.  This gave 30 replicate weights for use in the group
jackknife variance estimator.  

A comparison was made to a group jackknife based on only 15 groups.  The difference in
variability of the resulting variance estimates was noticeable, with 15 groups giving a model with
increased variability (but little difference in bias)

At the time when this evaluation was done it was usual to use the approximate split-halves
variance estimator described in section 3.4 for variance estimation.  This estimator depends upon
choosing a post-stratification which would approximate the effect of the final calibration
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adjustment.  The investigation showed that an unrealistically fine choice of this post-stratification
could lead to extreme underestimation of the variance.  A more realistic choice of
post-stratification variable gave much better estimates.  Models based on these approximate
split-halves estimates of variance were very comparable to models produced from the group
jackknife variance estimates.  The approximate split-halves variance estimates were slightly more
stable than those produced by the group jackknife with 30 replicates.  At the time of this analysis
there was little software to support the group jackknife estimation, and these results were used
to justify continued use of the approximate split-halves estimation approach.

Other evaluations on this data looked at alternative estimations with fewer adjustment steps.
This work highlighted the adjustment steps that had made a large impact on the weights.  In
particular, omitting the non-response adjustments would have led to greatly increased standard
errors for the estimates.

7.3 Various other findings from complex surveys
Variance estimation has now been studied for a number of surveys, using the technique of
comparing models from different estimators.  A number of general observations can be made
from these studies.

First, from the point of view of fitting models, there is not much to be gained from improving the
variability of variance estimates relative to the previously-used split-halves methodology.  This is
because the true values do not fit a simple model accurately enough to give much gain from
more accurate values.  A group jackknife estimator based on 30 replicates gives variances of
similar stability to the split-halves approach, and this is accurate enough for fitting variance
models.  On the other hand, using much lower numbers of replicates (e.g. 15 or fewer) does
noticeably affect the variability of the models.  

In the Labour Force survey example in section 6, standard errors from split-halves had lower
variability than those from the group jackknife with G = 30.  The situation here is different, in
that the modelled standard error estimates include many estimates by state.  State estimates are
based on much fewer strata, which increases the variability of split-halves standard error
estimates, relative to group jackknife estimates (which have the same number of degrees of
freedom for state estimates as for Australian estimates).

Bias would be a much more important issue than variability, but there is little evidence of
systematic bias in the resulting variance models.  Biases have been noted in particular types of
estimate.  For example, in experiments depending on calibration to very fine benchmarks, the
weighted residual or split-halves estimates were biased downwards.  The approximate
split-halves estimator is biased upwards for categories which are close to benchmark values that
were used in the actual weighting but not in the approximate post-stratification chosen.

There has been little evidence of gains from replicating the whole sequence of adjustments in
the group jackknife.  The weighted residual method is applied to only the last stage of
adjustments, effectively treating the input weights as fixed when in fact they are the results of
previous adjustments.  This could bias the variance estimates in cases where the final adjustment
is relatively cosmetic, and earlier stages of adjustment had a large effect.  We have yet to
encounter such a case in our testing.  The group jackknife has the advantage of protecting
against any such bias.

In summary, the group jackknife with around 30 replicates appears sufficiently stable for
modelling purposes and is approximately unbiased even for complex weighting processes.  The
weighted residuals variance estimates have a lower variability, and in most practical cases are
approximately unbiased.  Before using the weighted residuals method the user should consider
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whether the weighting adjustment process used for the survey has any special features which
could bias the resulting variance estimates.

An illustrative example

Graph 4 presents a typical graph of points to be modelled, to illustrate the points made above.

Graph 4: Various estimates of relative standard error vs. estimate size
LOG SEP and LOG EST are (base 10) logs of relative standard error % and estimate respectively.  
Points are for different estimates from the 1997 Family Characteristics Survey.
Mid-tone points are from approximate split-halves
Black squares (partially hidden) are from group jackknife with 28 replicates
Light points (partially hidden) are from group jackknife with 7 replicates

This graph shows various relative standard error estimates from the 1997 Family Characteristics
Survey, plotted against the corresponding estimates on a log-log scale.  The mid-tone points in
this graph are from an approximate split-halves methodology (as described in section 3.4).  We
model these points with a quadratic curve on this log-log scale.  

Much of the lack of fit in such a curve is due to the fact that the true relative standard errors do
not follow such a curve exactly - they themselves form a cloud with not much less spread than
the approximate split-halves points.  Reducing the variability of the standard error estimates will
thus not greatly improve on this model.

Also shown on the graph are relative standard error estimates from the group jackknife with 28
replicates (black squares) and 7 replicates (light points).  The extra variability from using only
seven replicates is clear.  There is also some indication that the approximate split-halves method
overestimates the standard error for the largest estimates.  This may be because the post-strata
used for the approximation do not fully reflect the benefits of the actual estimation approach for
large estimates. 
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8  Discussion
There is continuing pressure to make household surveys more efficient and to extend the range
of outputs that they can support.  This has led over the past twenty years to an increase in the
complexity of the surveys themselves, and of the estimation processes applied to them.  This
included the introduction of multiple steps of weighting and of calibration of weights to multiple
benchmarks. 

Over the last few years the ABS has actively investigated calibration methods and methods for
obtaining variance estimates for complex survey designs and estimation methods.  We have
produced an efficient SAS macro, GREGWT, to support calibration using the generalised
regression estimator and variants of this estimator.  This macro also supports the new variance
methods that have been evaluated, particularly the weighted residuals and group jackknife
methods.

Properties of variance estimators

This paper looked specifically at the merits of the various variance estimators proposed.  A
summary of their properties follows.

1. Group jackknife:
� Simple to apply even for complex estimates
� Thirty replicates gives sufficient stability for variance modelling
� Accounts for all steps of the weighting adjustment process
� Requires a number of replicate weights attached to each survey unit
� Allows external users to estimate standard errors from confidentialised files of unit data

using the replicate weights on the file

2. Weighted residuals
� Much more stable estimates than group jackknife
� Approximately unbiased in many practical cases
� Only accounts for final stage of the weighting process
� Requires stratum and variance group identifiers for each survey unit
� Does not allow external users to calculate standard errors from confidentialised unit

records, since the required information cannot be released to external users because of
confidentiality issues

3. Split-halves
� Similar properties to weighted residuals but without the low variability
� There is no practical evidence that split-halves is less biased than weighted residuals
� Approximate split-halves may be useful where stratum and variance group are known

but the exact details of weighting are unknown

4. Zoned jackknife
� Uses the same replicate weights as the group jackknife, plus a zone indicator
� Can give variance estimates with considerably lower variability than the group

jackknife, though with the danger of an increased bias 
� Not as simple to apply as the group jackknife, particularly for complex estimates
� Could be used by an external user where the accuracy of a single variance estimate is

critical
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Application for modelling

Historically, the ABS has presented standard errors for its household survey estimates using
models.  These models relate the standard error to the size of the estimate itself or the category
it is produced for.  These models are necessarily inexact at predicting the standard error of an
individual estimate.  

For the purpose of fitting such a model the key requirement is unbiased estimates of standard
error.  The split-halves estimator used historically has provided these well enough for this
purpose. The weighted residuals estimator is an improvement, with much lower variability.
However, either of these methods are potentially biased for certain types of weighting processes.
The group jackknife estimator is sufficiently stable for modelling purposes and is straightforward
to apply in a complex weighting situation so as to capture all contributions to the variability.

Application for providing standard errors for individual estimates 

The choice of a variance estimation approach depends on such factors as ease of computation,
accuracy and reliability of the variance estimators, information required for calculation (and
availability of such information on confidentialised files) and the use to which the variance
estimates will be put.

For the purpose of producing a broad summary of standard errors in publications, the ABS
constructs models.  However, to provide models that cover the full variety of estimates being
published is quite time-consuming.  Although it is possible to develop separate models for
different grouping of variables, in practice, very few users make use of these detailed models.
Standard errors from the models can be subject to moderate model errors - a standard error
directly estimated for each variable would not be subject to this limitation..

An alternative to the modelling approach would be to provide a facility to estimate the standard
error for individual estimates.  The technology to do this will be made available through the
SUPERCROSS tabulation package.  This package efficiently produces a wide range of estimates,
and can be modified to provide standard errors for the group jackknife approach. The simplicity
of the group jackknife calculations makes this method ideal for this context.  

The main negative for the group jackknife is that the standard error estimates can be quite
variable.  If this becomes the usual source of standard error estimates from the SUPERCROSS
package, it would be appropriate to provide a warning to users.  This could state that the
standard errors are only estimates, and perhaps suggest smoothing them across a number of
similar estimates in cases where a more reliable standard error estimate is needed.

Conclusion

The above considerations suggest that the group jackknife approach is suitable for use as the
standard approach to estimating variances for ABS household surveys for the purpose of  
publication.  Other methods such as the weighted residuals method or the zoned jackknife may
be appropriate in situations where the quality of standard error estimates is critical (and the
assumptions underlying the method used are reasonable).  This could apply, for example, in
evaluating different methodologies, as in such studies the precision of the standard errors may
be critical to detecting small effects.
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Appendix:  Algorithms implemented in GREGWT macro

Introduction

A SAS macro GREGWT has been written in the ABS to perform calibrated weighting, included
generalised regression estimation and the variants described in section 2.8. The standard
generalised regression method does not place any restrictions on the size of the weights - this
can lead to problems such as negative weights.   Variants described in section 2.8 arise as
responses to these problems.  

All the approaches modify some initial weights to produce weights that aggregate to known
benchmark constraints.  The methods are described in Singh and Mohl (1996).  The algorithms
used in GREGWT correspond to Method 5, the "Truncated Linear" method, and Method 6, 'the
Truncated Exponential" method, of Singh and Mohl (1996),  They introduce range restrictions on
the weights in addition to the benchmark constraints.  Using these methods the weights will
always meet the range restrictions.  If convergence is not achieved then the benchmark
constraints will not be met, rather than the range restrictions being ignored.  Convergence
problems generally suggest some problem with the weighting situation being addressed.

GREGWT applies the algorithms without at any stage storing the intermediate weights produced
at each iteration.  This allows efficient computation of all iterations within a single SAS data step,
without storing the weights in internal memory.  The algorithms are given below in this form,
rather than as presented by Singh and Mohl (1996).

Generalised regression method

Generalised regression as described in section 2.5 corresponds to Method 1 of Singh and Mohl
(1996).  As in section 2, suppose that  is a row vector of auxiliary variables, and X is axi

corresponding row vector of benchmark values and  are input weights.  The generalisedwi
A

regression weights  are obtained by the following calculations:  wi
GR

x̂A =� i wi
Axi

TA =� i ai
(0)xixi

�/ci

Calculate  a solution to the equation A (X − x̂A) = ATA

wi
GR = wi

A(1 + Axi
� /ci)

This requires finding  a solution to an equation .  GREGWT finds this solution byA (X − x̂A) = ATA

decomposing  into the form  for U an upper triangular matrix.  It is thenTA TA = U �U

straightforward to successively solve  for , and then for A itself.(X − x̂A) = AU �U AU �

This will lead to weights that fulfil the benchmark constraints , provided that the� i wi
GRxi = X

matrix  is singular.  For non-singular  this calculation ignores any benchmark constraintsTA TA

corresponding to rows of  that are linearly dependent on previous rows.  These ignoredTA

benchmarks may still be met, if the values provided for them are consistent with the constraints
that were not ignored.  If they are not met any differences will be flagged by the macro.
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The truncated linear regression method

The idea of the truncated linear regression method is to perform the standard generalised
regression calculations above, then to truncate the weights so that they lie within specified
bounds  for each unit i.  These bounds could be constant across units or proportional to[Li, Ui]
the original weights, or specific to individual units.  If truncation occurs, the benchmark
constraints will not be met by the weights.  This leads to an iterative approach which should
match the benchmark constraints after a few iterations.

The truncated linear regression algorithm proceeds as follows,

Step 1: Initialise: (note that the superscript in parentheses denotes the iteration)

for all units iai
(0) = wi

A

X(0) =� i ai
(0)xi

T(0) =� i ai
(0)xixi

�/ci

Calculate  a solution to the equation A(0) (X − X(0)) = A(0)T(0)

Go to step 2 for iteration .m = 1

Step 2. For each unit i:

w̃(m) = wi
A(1 + A(m−1)xi

�/ci)

if    then set    and    w̃(m) < Li wi
(m) = Li ai

(m) = 0

else if  then set    and    w̃(m) > Ui wi
(m) = Ui ai

(m) = 0

else set     and      wi
(m) = w̃i

(m) ai
(m) = wi

A

Step 3. X(m) =� i wi
(m)xi

T(m) =� i ai
(m)xixi

� /ci

Calculate  a solution to the equation Ã(m) (X − X(m)) = Ã(m)T(m)

A(m) = A(m−1) + Ã(m)

Step 4. Convergence is achieved if for all elements (indexed by p) of row vectors X, , X(m) A(m−1)

and  one of the two conditions below is met:A(m)

  either (benchmark constraints met)Xp − Xp
(m) < �X

     or   (no improvement)Ap
(m−1) − Ap

(m) < �A

for specified small values  and .�X �A

If convergence is achieved or the maximum number of iterations is reached then stop. 
Otherwise, increment m and repeat from step 2.

At convergence, the final weights are given by .wi
(m)

According to Singh and Mohl, the iterations above constitute the Newton-Raphson steps for
minimising the generalised least squares distance function (2.11) for , subject to thewi in [Li, Ui]
benchmark constraints.  
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The truncated exponential method

The truncated exponential method minimises the distance function

] (2.13)FEXP = � i ci[wi log(wi/wi
A) − wi + wi

A

for , subject to the benchmark constraints.  The Newton-Raphson steps forwi in [Li, Ui]
minimising this function are the same as for the linear distance function, except at step 2, which
is revised as follows.

Step 2*. For each unit i:

w̃(m) = wi
A exp(A(m−1)xi

� /ci)

if    then set    and    w̃(m) < Li wi
(m) = Li ai

(m) = 0

else if  then set    and    w̃(m) > Ui wi
(m) = Ui ai

(m) = 0

else set     and      wi
(m) = w̃i

(m) ai
(m) = w̃i

(m)

This is method 6 described in Singh and Mohl (1996).  Setting appears in theai
(m) = w̃i

(m)

appendix of Sing and Mohl (1996), though the description in the text uses , as for theai
(m) = wi

A

linear case.  In my experience either formula appears to work, but the former leads to more rapid
convergence; this is the formula used in the GREGWT macro.   
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